
 

Development of AlphaZero-based Reinforcment 
Learning Algorithm for Solving Partially Observable 

Markov Decision Process (POMDP) Problem 
 

Tomoaki Kimura 
Engineering department,     

The University of Electro-Communications  
Tokyo, Japan 

 
 

  
Katsuyoshi Sakamoto 

 Engineering deptpartment,      
  The University of Electro-Communications  

Tokyo, Japan 
 

 
Tomah Sogabe * 

i-PERC & 
Engineering department,     

The University of Electro-Communications  
Tokyo, Japan; 

Grid, Inc. 
Tokyo, Japan 

sogabe@uec.ac.jp 
 
 

    
Abstract—In recent years deep reinforcement learning 

(DRL) methods have advances rapidly, so DRL is applied in 
many fields. Most of DRL algorithms assume that the 
information from the environment is perfectly observed. 
However, in many real problems, the information from the 
environment is not fully observed. Such a problem is treated as 
a Partially Observable Markov Decision Processes (POMDPs). 
So, algorithms that solve POMDPs are important in applying 
DRL to real-world. In this paper, we apply AlphaZero, a deep 
reinforcement learning algorithm that achieve great 
performance in game, to POMDPs and show that the algorithm 
may be effective for POMDPs using a partially observable maze 
problem. 

Keywords—reinforcement learning, AlphaZero, POMDPs, 
maze problem 

I. Introduction 
With the development of deep reinforcement learning 

(DRL) in recent years, DRL has begun to be applied to many 
fields such as robot control and games. The algorithm 
AlphaGo[1] announced by Google Deep Mind in 2016 
defeated the top Go player Lee Sedor, and the successor 
algorithm AlphaZero[2] fought 100 times against AlphaGo 
and won 100times. Thus, the deep reinforcement learning 
algorithm is progressing rapidly. 

Many famous deep reinforcement learning algorithms like 
DQN[3] assume that the state is fully observed. This is not a 
problem in an ideal environment such as a simulation, but is a 
problem in real-world environments because accurate 
information is often not available. A problem with incomplete 
state obtained from an environment is treated as a Partially 
Observable Markov Decision Processes (POMDPs). Since 
real-world problems are often this POMDPs, it is important to 
develop an algorithm that can solve this problem. 

Therefore, in this study, we developed an algorithm that 
solves POMDPs by extending the DRL algorithm AlphaZero, 
which shows overwhelming performance in games Go, to be 
applicable under POMDPs and verified its effectiveness using 
a partially observable maze problem. 

II. Background 
1. POMDPs 

In the POMDPs, the agent cannot fully observe the state, 
but instead receives an observation from the environment. 

The initial state is determined from the initial state 
distribution. When the agent acts 𝑎 in the environment, the 
state transitions from 𝑠  to 𝑠′  according to the transition 
probability 𝑃𝑟(𝑠′|𝑠, 𝑎) , receives an observation 𝑜  from the 
environment according to the observation probability 
𝑃𝑟(𝑜|𝑠+, 𝑎), and receives the reward 𝑟 according to the reward 
function 𝑃𝑟(𝑟|𝑠+, 𝑎) . The history ℎ-  is the time series of 
actions and observations and is expressed as ℎ- =
{𝑎0, 𝑜0, 𝑎1, 𝑜1, … , 𝑎-, 𝑜-} . The agent's policy is denoted 
𝜋(ℎ, 𝑎) = 𝑃𝑟(𝑎|ℎ). The purpose of the agent is to learn a 
policy 𝜋∗  that maximizes the expected total reward 
𝔼7[∑ 𝛾;<-𝑟;=

;>- ]. 

The belief state 𝐵 is denoted 𝐵(𝑠, ℎ) = 𝑃𝑟(𝑠|ℎ), it can be 
updated by the following formula. 

𝐵(𝑠′, ℎ𝑎𝑜) =
∑ 𝑃𝑟(𝑜|𝑠+, 𝑎)𝑃𝑟(𝑠′|𝑠, 𝑎)𝐵(𝑠, ℎ)A

∑ ∑ 𝑃𝑟(𝑜|𝑠++, 𝑎)𝑃𝑟(𝑠′′|𝑠, 𝑎)A++ 𝐵(𝑠, ℎ)A
 

2.   AlphaZero 

In Alpha Zero, the policy is determined by MCTS. The 
Neural Network (NN) combined the policy network and the 
value network into a single network, unlike AlphaGo. By 
making predictions using NN in MCTS, the rollout for getting 
a reward that was necessary in the AlphaGo has become 
unnecessary. 

The flow of training begins with self-play by executing an 
action according to the policy computed by MCTS. When the 
self-play is completed and a reward is obtained, each state 
experienced by the self-play, the policy at that time, and the 
reward are stored and used for training. The policy is trained 
with the cross-entropy error and the value is updated with the 
mean squared error. 

 

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 69–73, January 2020

– 69 –



 

III. AlphaZero for POMDPs 
AlphaZero is an algorithm that can be used only when the 

state can be completely observed, so it is difficult to apply it 
to the problem of the POMDPs. Therefore, we made the 
following extensions. 

1. Dealing with time series in the NN 

2. Treating POMDPs in the MCTS 

The training pipeline is shown in Algorithm 1. The 
architecture of NN and MCTS flow are explained below. 

1.   Neural Network Architecture  

In the POMDPs, the policy 𝜋 is denoted as a function of 
history ℎ  such as 𝜋(ℎ, 𝑎) = 𝑃𝑟(𝑎|ℎ) . Therefore, when the 
policy is expressed in NN, NN must treat history h, which is 
time series of actions and observations. So, with reference to 
the method[4], we use LSTM to deal with time series and 
express history ℎ, and the expressed ℎ is processed by FNN to 
obtain policy 𝑝 and value 𝑣. In the training, the policy 𝑝 is 
updated by the cross-entropy error with a policy 𝜋(ℎ, 𝑎) 
obtained by MCTS and the value 𝑣 is updated by the mean 
squared error with a reward 𝑧 obtained at the end of an episode 
(Figure 1). 

 
Figure 1: Neural Network training procedure 

2.  Partially Observable MCTS 

We extended MCTS in AlphaZero to treat POMDPs with 
reference to the method[5] which expanded MCTS to deal 
with POMDPs. Figure 2 shows MCTS pipeline.  

In the Select, a state is first sampled from the belief state 
of the root node. The action with the largest UCB1 is selected, 
and the process proceeds to the next node. Then, from the 
sampled state and this action, a state transitioned and an 
observation are received using the simulator, then process 
proceeds to the next node. The above processes are repeated 
using the transitioned state and the tree is searched. At this 
time, the state received from the simulator (s3 in the Figure 2) 
is saved. 

In the Expand, a leaf node is expanded. 

In the Evaluate, the expanded node is evaluated using NN. 
Then, 𝑝 calculated by NN are stored and a hidden state and a 
memory state of LSTM are stored on the expanded node. 

In the Backup, the nodes that have been visited are traced 
back from the expanded leaf node to the root node, and the 
node value is updated using 𝑣 calculated by NN. At this time, 
the states saved at the time of Select (s3 in the Figure 2) are 
added to the belief state of the nodes. 

The above four processes are repeated to finally find a 
policy proportional to 𝑁0 FG . 𝑁 is the number of visits from the 
root node to each action node. 

 

 

 

 

 

Figure 2: MCTS in POMDPs 

 

 

 

– 70 –



 

IV. Experiments 
In order to confirm that the proposed method can learn, we 

performed a benchmark test using a partially observable maze 
problem. In addition, we performed a comparative experiment 
with different observation probabilities.  

1.    Partially Observable maze problem 

A partially observed maze problem (Figure 3(left)) was 
designed as a POMDPs environment. The problem is that the 
agent goes from the start S in the lower left (1, 1) to the goal 
G in the upper right (8, 8), but the agent cannot know exactly 
where it’s position is. The state was the position of the agent, 
and the observation that the agent obtains was generated 
according to the observation probability which is showed in 
(Figure 3(right)). Any of the states, the bottom, the left, the 
top, and the right was selected according to their probabilities 
and became the observation. At each step, the agent moves to 
the right, top, left, bottom, or as-is depending on the action.  
Each Episode ended when the agent reached a black trap by 
movement. The maximum number of steps per episode was 
30. The reward was given only when the agent reached goal 
G, according to the number of steps to reach goal. 

𝑟- = H
𝑡J;K 𝑡G 																						𝑠- = 𝐺
0																														𝑒𝑙𝑠𝑒

 

𝑡J;K is the minimum number of steps required to reach goal, 
and in this case it is 14. 

 

 

 

 

Figure 3: (left)Partially observable maze problem 
(right)Observation probability 

Figure 4 shows the result of learning maze problem by 
proposed method. It can be confirmed that the proposed 
method can actually learn. 

Figure 4: reward curve in maze problem 

2.     Comparative experiment 

We changed the observation probability that is showed in 
(Figure 3(right)) and performed a comparative experiment 
with three types of observation probability as shown in Figure 
5. 

Figure 6 shows the result of comparative experiment. It 
can be seen that proposed method can learn for three types 
observation probability. Comparing the three types, it can be 
seen that the higher the probability of observing true state, that 
is, the closer to fully observation, the faster the reward rises, 
and the more stable in higher reward. 

 

 

 

 

 

 

S

G

0 1 2 3 4 5 6 7 8 9

Observation probability

0
1

2
3

4
5

6
7

8
9

(1, 1)

(8, 8)

(5, 4) (6, 4)

(5, 5)

(4, 4)

(5, 3)

(6, 4)(5, 5)(4, 4)(5, 3)

(5, 4)

CD L U R

– 71 –



 Figure 5: different types of observation probability 

Figure 6: reward curve in comparative experiment 

Figure 7 shows movements of an agent in an episode using 
learned parameters (red arrow) and movements of 
observations at that time (blue arrow) with three types of 
observations shown in Figure 5. Even if the observation is 
different from the true state, it can be confirmed that the agent 
can go to goal. 

 

Figure 7: state and observation movement with three types of 
observation probability 

V. Conclusion 
In this study, we proposed a method to extend the deep 

reinforcement learning algorithm AlphaZero, which assumes 
complete observation, to be applicable to the problem of 
POMDPs. The proposed method was applied to the partially 
observable maze problem, and it was confirmed that proposed 
method can learn. In addition, we performed a comparative 
experiment with changing the observation probability of the 
problem, and confirmed that proposed method can learn at 
three types observation probability, but more stable learning 
was possible as it approached complete observation.  

As future prospects, we will confirm whether this method 
can be applied to more complex problems which have many 
state spaces and observation spaces. In addition, we will 
compare proposed algorithm with other algorithms for 
POMDPs. 

VI. Reference 
[1] D Silver, A Huang, C Maddison, A Guez, L Sifre, G 

Driessche, J Schrittwieser, I Antonoglou, V 
Panneershelvam, M Lanctot, S Dieleman, D Grewe, J 
Nham, N Kalchbrenner, I Sutskever, T Lillicrap, M Leach, 
K Kavukcuoglu, T Grapel, D Hassabis, “Mastering the 
game of Go with deep neural networks and tree search”, 
Nature, 2016 

[2] D Silver, J Schrittwieser, K Simonyan, I Antonoglou, A 
Huang, A Guez, T Hubert, L Baker, M Lai, A Bolton, Y 
Chen, T Lillicrap, Fan Hui, L Sifre, G van den Driessche, 
T Graepel, D Hassabis, “Mastering the game of Go 
without human knowledge”, Nature, 2016 

[3] V Mnih, K Kavukcuoglu, D Silver, A Rusu, J Veness, M 
Bellemare, A Graves, M Riedmiller, A Fidjeland, G 
Ostrovski, S Petersen, C Beattie, A Sadik, I Antonoglou, 
H King, D Kumaran, D Wierstra, S Legg, D Hassabis, 

(6, 4)(5, 5)(4, 4)(5, 3)

(5, 4)

CD L U R

(6, 4)(5, 5)(4, 4)(5, 3)

(5, 4)

CD L U R

(6, 4)(5, 5)(4, 4)(5, 3) (5, 4)

CD L U R

(a)

(b)

(c)

– 72 –



“Human-level control through deep reinforcement 
learning”, Nature, 2015 

[4] P Zhu, X Li, P Poupart, G Miao, “On Improving Deep 
Reinforcement Learning for POMDPs”, arXiv: 
1704.07978v6, 2018 

[5] D Silver, J Veness, “Monte-Carlo Planning in Large 
POMDPs”, in Neural Information Processing Systems, 
2010 

 

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

– 73 –


