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Abstract—Art font is a typeface decorated with special visual
effects and is widely used in two-dimensional graphic design.
Generating art fonts directly from images is a convenient way
to design art fonts that reduce the need for expertise. The
appearance of such decorative fonts is similar to the foreground
of the reference image. In this paper, we propose an art font
generation method using machine learning, which uses multiple
Pix2Pix networks to quickly generate high-quality art fonts
similar to the foreground of a reference image. In this method,
first of all, three Pix2Pix networks are used directly. One of
the networks is used for mask dataset generation and the other
two networks are used for art font generation. Secondly, the
parameter β can be used directly to control the effect of the
network generation without changing the network structure of
Pix2Pix. The experimental results show that the proposed method
effectively controls shape change and texture imposition by
dividing them and can generate artistic art fonts. Furthermore,
we showed that the proposed method could generate artistic
and complicated art fonts for input fonts with different shapes,
indicating that the method has high practical utility.

Index Terms—art font, Pix2Pix, Generative Adversarial Net-
work, machine learning

I. INTRODUCTION

Art font is a kind of font with a unique decorative effect,
commonly used in the field of 2D graphic design such as
advertising. It includes traditional calligraphy and fonts based
on stylized effects. Usually, these art fonts are designed by
professionals using professional software, which is not effi-
cient and it is time-consuming and laborious for non-experts.
On the other hand, designing art characters is a large amount
of work. Since not only English letters are included, but also
Japanese, Chinese, etc. need to be specially designed, it is
impractical to manually design each type of art font. Because
of the importance of art fonts in life, there are many algorithms
related to art font generation [1]–[4].

Recently, machine learning has been well developed in
the field of computer vision, especially image processing
techniques have been improved [5]–[8]. Once the network
is trained, it can generate a large number of high-quality
images at once. Because of the use of Generative Adversarial
Networks (GANs) [9], the image generation effect, quantity,
and generalization ability have been greatly improved. Huang
et al. [10] proposed a novel adaptive instance normalization
layer that aligns the mean and variance of the content features
with those of the style features. This method is fast and without
the restriction of a pre-defined set of styles. Li et al. [11]
proposed a Markovian Generative Adversarial Network, it can

directly decode brown noise to realistic texture, or photos
to artistic paintings. Mirza et al. [12] proposed conditional
Generative Adversarial Networks(cGANs), the output image
of the network can be controlled by the input condition data.
Isola et al. [13] proposed Pix2Pix Network, based on cGANs,
is a general-purpose solution to image-to-image translation
problems.

Due to the importance of art fonts in daily life, many
studies related to art fonts have been generated. Yang et
al. introduced a traditional method of patch-based texture
synthesis algorithm to map features to correlated positions
on character skeleton [1]. Since traditional algorithms usually
have low generation efficiency, Gao et al. proposed a machine
learning based art font generation algorithm, AGIS-Net, to
transfer both shape and texture styles in one-stage with only
a few stylized samples [2]. However, since art fonts contain
both shapes and textures, generating them at once will cause
information loss. In order to reduce the information loss of
shapes and textures of art fonts, Yuan et al. proposed a cGANs-
based art font generation network containing two cGANs
networks for changing shape and texture respectively [3].
Yang et al. [4] proposed a shape-matching GAN to generate
real-time controllable art font with foreground features from
reference images. This method works well when generating the
outer outline of the font. However, it is difficult to generate
good effects inside the complicated fonts when the artistic
effect is high. For example, the flame font should have sticky
effect inside when the artistic style is very strong. In addition,
this method uses a many-to-one network training method with
a very complex training process.

In machine learning, Convolutional Neural Networks
(CNNs) is one of the most commonly used algorithms in the
field of image generation. Gatys et al. introduces an artificial
system based on CNNs that creates artistic images of high
perceptual quality [5]. [6] proposed A Neural Algorithm
of Artistic Style that can separate and recombine the image
content and style of natural images. It can combine the
content of a photograph with the appearance of numerous well-
known artworks. Li et al. studies a combination of generative
Markov random field models and discriminatively trained deep
convolutional neural networks for synthesizing 2D images [7].
Ulyanov et al. proposed to replace the batch normalization
layer with an instance normalization layer, which is a great
improvement for image generation [8]. Johnson et al. pro-
posed a perceptual loss based on VGG16 and links it with
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convolutional neural networks, improving the texture quality
of transferred images [14]. Due to information loss, using a
single network may not generate the best image. Xue et al.
divided the generation of Chinese landscape painting into two
networks: line sketching and coloring. [15]. Yuan et al. [3]
proposed a two-step art font generation method based on
cGAN, and Yang et al. [4] proposed a multi-step art font
generation method based on GAN, proving the effectiveness
of the separation network for art font generation.

This paper proposes a method to generate art fonts similar to
the foreground of the reference image using Pix2Pix networks,
while the shape of the generated art fonts can be controlled
directly using parameters. In the task, the shape and color of
the art font must be similar to the reference image, at the same
time the Pix2Pix network generates images that require paired
datasets. Therefore, we split this task into multiple steps to
complete. Fig. 1 shows our proposed method for generating
art fonts.

This method consists of three Pix2Pix networks, the shape
convert network, the color convert network, and the dataset
generation network. The shape convert network is used to
generate art font masks. It can control the shape of the
generated art font mask in real-time using the parameter β,
varying between artistry and readability. The color convert
network is used to generate the art font image. It takes the art
font mask output from the first network and fills it with texture
to create the final art font effect, such as flame, water, etc.
Since the shape convert network has the function of generating
controllable images in real-time, it needs to use a large number
of art font mask images during training. We used the dataset
generation network to generate art font masks with different
hyper-parameters to make multiple art font datasets for the
shape convert network training. We add the original font to
training, and use hyperparameters to control the effect of the
dataset generation network, which can switch between extreme
deformation effects and almost completely unchanged fonts,
with a wide range of font variations. We performed various
scaling and cropping of the reference image, and kept the
scaling of the original image to make full use of the small data
set, at the same time, we used perceptual loss [14] in texture
filling, so that the generated complex fonts have a good artistic
effect. After the network is trained, it can quickly generate a
large number of art fonts.

The other sections are presented below. Section II introduces
the baseline of the proposed method: the Pix2Pix network,
and the details of the proposed method. In Section III the
experimental parameters, experimental results and comparison
experiments are described. Finally, in Section IV we summa-
rize the content of the paper and propose future goals.

II. METHOD

In this section, we first review the image-to-image transla-
tion method using Pix2Pix. After that, our proposed method
will be presented.

A. Pix2Pix Network

Pix2Pix is a deep neural network model, a type of Gener-
ative Adversarial Networks (GANs). It consists of two basic
networks, a generator G is used to generate images that are
similar to real images and a discriminator D. The original
image y is the input of the generator and G(y) is the output of
the generator. The image generated by the generator is called a
fake image and the image x coming from the dataset is called
a real image. The original image is input to both the generator
and the discriminator to determine whether the image is real
or fake.

In Pix2Pix, the generator uses the U-Net [16], and Fig. 2
shows the structure of this generator. The U-Net is a network
consisting of two parts, the encoder, and the decoder. The
encoder is composed of fully convolutional layers for down-
sampling, and the decoder is composed of deconvolutional and
convolutional layers for upsampling, each having eight layers.
The corresponding skip connection is used between each layer,
which is used to keep the image information from being lost
due to a large amount of downsampling and upsampling.

On the other hand, Fig. 3 shows the network structure of
the discriminator. In Pix2Pix, the discriminator uses a network
structure called PatchGAN [7]. The PatchGAN is designed
as a fully convolutional network, where the image is not
fed into the fully connected layer or activation function after
convolutional layers. The input will be mapped into an N×N
matrix using convolution, which is equivalent to the final
evaluation value in the original GAN to evaluate the generated
image by the generator. Each element of the N × N matrix
represents the evaluation value of a patch in the original image.
The average of these values is used as the final discriminant
result.

Fig. 4 illustrates the basic network structure of Pix2Pix. The
main purpose of the generator is to generate an image G(y)
that is similar to the feature of the target domain image. The
generator and the discriminator will train each other at the
same time. During the training stage, the generator will try
to generate images that the discriminator cannot discriminate.
The discriminator will try to discriminate between a real image
and a fake image, and through this adversarial training, the
generator will generate more realistic images. Pix2Pix uses the
loss function LcGAN to achieve the above training objectives.

LcGAN (G,D) = Ex ,y [logD(x, y)]

+ Ey[log(1−D(G(y), y)]
(1)

At the same time, in order to make the images generated
by the generator quickly approach the real images and achieve
higher quality, adding loss function Ll1 of paired data sets to
the loss function can achieve the goal.

Ll1 (G) = Ex ,y [∥x−G(y)∥1] (2)

Finally, LPix2Pix is the complete loss function of Pix2Pix.
It consists of the two loss functions above.

LPix2Pix = LcGAN (G,D) + λLl1 (G) (3)
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Fig. 1. Outline of the proposed method
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Fig. 2. Generator Network

During training, the generator and the discriminator will try
to minimize and maximize the loss function, respectively, in
order to obtain an optimal generator.

B. Network Architecture

Three Pix2Pix networks are included in our proposed
method. The dataset generation network is used to generate
mask datasets. The shape convert network, and the color
convert network are used to generate art font.

1) Generate Mask Datasets: The Pix2Pix requires a paired
dataset, and the original font does not have a corresponding
art font mask as a paired dataset, so it cannot be trained
directly. Therefore, we use the dataset generation network for
generating the art font mask dataset. The dataset generation
network is used where the input is the original font and the
output is the transformed art font mask. When training the
network, the rough mask and the detailed mask are used as

paired datasets to try to add details of the detailed mask to the
rough mask. The input is the rough mask and the output is
the detailed mask. Use Lmask to make the fake detailed mask
close to the real detailed mask.

Lmask = Ll1 (G) = Ex ,y [∥x−G(y)∥1] (4)

We use Adobe Photoshop to obtain foreground masks of a
reference images, which is an image with a white foreground
and a black background. For a detailed foreground mask, use
the lasso tool to select the content as carefully as possible to
ensure that its details are closer to the reference image. For
a rough foreground mask, use the lasso tool to get only the
general content of the foreground, with only the foreground
outline of the reference image and no detail parts.

When testing, the original font is fed into the network as a
rough mask so that it gets the foreground detail of the reference
image. Usually, this would make the font shape completely
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collapsed and unreadable. Therefore the original font is also
used as part of the network training, using Lfont to make the
output art font mask close to the shape of the original font. At
the same time, the hyperparameter β will control the weight of
this loss function. When β is 0, this loss function is disabled,
so the output art font mask will be completely collapsed and
almost unreadable. While, when β is 1, the art font mask will
extremely close to the original input font.

Lfont = Ll1 (G) = Ez[∥z −G(z)∥1] (5)

Fig. 5 illustrates the dataset generation network. Ldg is the
complete loss function.

Ldg = LcGAN (G,D) + λLmask + βLfont (6)

2) Generate Art Fonts: Two Pix2Pix networks are needed
to generate art fonts, the shape convert network and the color
convert network. Input the original font into the shape convert
network and the output will be an art font mask. Input the
output art mask into the color convert network and we will
get the final art font.

First, we start with the shape convert network. The shape
convert network is used to generate controlled art font masks.
It uses the art font masks generated by the dataset generation
network and the original fonts as paired datasets. During
training, we use parameter β to control the shape of the
generated art font masks. The parameter β will correspond to
the hyper-parameter β of the dataset generation network, and
we have six sets of art font masks datasets. We feed parameter
β into the generator along with the original font image, which
outputs a art font masks corresponding to parameter β. After
the parameter β is input into the network, it will be converted
into a 256× 256 matrix, and each parameter is filled with β.
This matrix will be concatenated with the original font and

input into the convolutional layer. We use Lctrl to make the
generated art font masks quickly approach the mask label.

Lctrl = Ll1 (G) = Ex ,y [∥x−G(y, β)∥1] (7)

The parameter β will also input into the discriminator with the
generated image or the real image. We use the loss LcGAN to
train the network.

LcGAN (G,D) = Ex ,y [logD(x, y, β)]

+ Ey[log(1−D(G(y, β), y, β)]
(8)

The total loss function of the shape convert network is Lsc .

Lsc = LcGAN (G,D) + λLctrl (9)

The color convert network use the reference image and
the detailed foreground mask as the paired dataset. During
training, its input is the foreground mask and the output is the
colored image. During test, the art font mask generated by the
shape convert network is used as input, and the output is the
colorized art font.

For discrete images, such as leaves, perceptual loss [14]
called Lvgg is needed to give the output art fonts a more
significant texture. The perceptual loss is a VGG16 [17]
network without linear layers and pre-trained with ImageNet,
it contains two parts, the Lstyle and the Lcontent . The total loss
of the color convert network is Lcolor . Fig. 6 shows the details
of the shape convert network and the color convert network.

Lcolor = LcGAN (G,D) + λLl1 (G)

+ αLstyle + κLcontent

(10)

III. EXPERIMENTS

In this section, we will describe about the experimental im-
plementation. After that, we will show the art fonts generated
by the experiment and describe them in detail.

In this work, we use the proposed method to convert the
original font into an art font with the style of the reference
image and able to control the shape of the generated font using
the parameter β.

We selected 1107 characters as the original input font
dataset. It contains numbers from 0 to 9, English alpha-
bets, kana, and common Chinese characters from Thousand-
Character Classic [18]. The Thousand-Character Classic is
an ancient Chinese poem containing one thousand common
Chinese characters, each of them is not repeated. We used
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Adobe Photoshop [19] to render it as 256× 256 size images.
We collected and photographed different kinds of reference
images from the web and manually created a rough foreground
mask and a detailed foreground mask for them using Adobe
Photoshop. Fig. 7 shows the dataset of fire. For training, we

Original font Fire image Rough fire mask Detail fire mask

Fig. 7. Original font and reference image dataset

generated the art font mask dataset in Fig. 8 by controlling
the hyper-parameter β. The art font mask dataset is used as

Original font β=0.0 β=0.06 β=0.1 β=1.0

Fig. 8. Art font mask dataset

a paired dataset in the shape convert network training. The
detailed foreground mask and fire images are used as the
dataset for the color convert network. All the reference images,

foreground masks were cropped to 256x256 size images at
128 pixel intervals. We trained the network using PyTorch
1.7.1 [20] with a learning rate of 0.002 and 200 epochs using
Adam [21] as the optimize, and the dropout rate is 0.5. The
ratio of training set and test set is 9:1.

Fig. 9 shows the final result of the fire art font. Most of
the results of the fire art font generation are good. This figure
consists of the original font, the generated art font mask with
different parameters and the art font.The networks successfully
generates masks of the target font and the art font effect.
The fire font with different shapes also can be successfully
generated under the control of parameter β. This proves the
effectiveness of the β as a control parameter.

Our proposed method divides the art font generation into
three implementation steps, one for dataset generation and
two of which are used for art font generation. To verify the
effectiveness of the separation network, we chose one Cycle
GAN [22] to directly generate the art fonts. This is due to
the fact that Cycle GAN does not require paired datasets and
is able to generate target images of different domains in one
step. Fig. 10 generates art fonts with clouds as the reference
image, and compares the effect of Cycle GAN with that of our
proposed method. The results of Cycle GAN are difficult to
read. The Cycle GAN does not find which part of the original
font needs to be transformed into art fonts, so it is difficult to
control the result. Our proposed method can generate easy to
read art fonts.

In addition, Fig. 11 was compared for the effect of with
or without Lvgg for discrete images, such as leaves, cherry
blossom, etc. It can be seen that without using Lvgg , although
the art font has the color and part of the texture of the reference
image, it is not significant, especially the leaf art font. After
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Fig. 9. Experimental results of generating different shapes of fire art fonts using different parameters β
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Fig. 10. The comparison of the generated images

using Lvgg , the cherry blossom art font and the leaf art font
appear with obvious cherry blossom texture and leaf texture.

Original Font w/o 𝐿𝑣𝑔𝑔 w/ 𝐿𝑣𝑔𝑔 w/o 𝐿𝑣𝑔𝑔 w/ 𝐿𝑣𝑔𝑔

Fig. 11. Compare the effect of with and without Lvgg

Finally, Fig. 12 shows a variety of reference images we used
as datasets, such as water and clouds found from the Internet,
as well as shots of cherry blossom and trees on the wall, with
multiple images of each type. Fig. 13 shows various art fonts
created based on these reference images. The results show that
good results were obtained in all these reference images. The
features of the reference images can be clearly identified from
the generated art fonts while they can be easily read.

IV. CONCLUSIONS

We propose a method for generating art fonts from images
based on three Pix2Pix networks. First, in order to obtain the
paired dataset needed for Pix2Pix, we successfully generated
different art font masks using the dataset generation network.
Then, we successfully used the shape convert network to

Reference Rough Detail Reference Rough Detail

Fig. 12. Reference image dataset

Original Font Cloud Fire Island Water Sakura Tree

Fig. 13. Art fonts made with multiple reference images

generate art font masks, at the same time, we can use β to
control the shape of the results. Finally, we successfully used
the color convert network to generate art fonts. The network
can generate a large number of fire art fonts at one time
after training. Most of art fonts have high quality. As the
future research topic, we consider adding more functions into
this network. For example, converting handwritten fonts to art
fonts.
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