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Abstract—The AES symmetric cipher is widely used as a
standard encryption method in various network protocols. Al-
though it has proven resistant to most direct attacks, it hasn’t
been extensively studied from the perspective of modern neu-
rocryptanalysis and big data. Therefore, this paper aims to
comprehensively analyze the components of the AES protocol,
empirically determine their learnability, and provide empirical
results that demonstrate the hardness of the cipher. Our analysis
involves evaluating the ability of various models to learn the
different components of the AES cryptosystem, as well as their
combinations. Furthermore, we examine the overall ability of
these models to recover a network that estimates the operation
of adding the secret key to the input data. Through our research,
we show that AES is indeed resistant to machine learning attacks.
However, under certain configurations of the data and the AES
cipher, it is possible to recover the decrypting network.

Index Terms—AES, Machine Learning, Neural Networks

I. INTRODUCTION

Symmetric cryptography is a vital tool used to secure
data and facilitate secure communication in modern networks.
Numerous symmetric cryptographic primitives exist, such as
AES, IDEA, DES, and Blowfish, among others [1]. On
one hand, symmetric cryptography is designed to offer high
throughput, and on the other hand, it is desired for the cipher
to be scalable, accommodating an increased number of inputs
or complexity. AES serves as an example of such a cipher,
as it is fast and based on simple discrete mathematical prin-
ciples, including XORing the signal with the key, reversible
substitution, and reversible modulo diffusion operations [2].

AES is a block cipher that exhibits ideal scalability by
providing various modes to handle increasing input sizes.
Additionally, the encryption strength of AES increases with
more iterations of the AES round.

Because of its high usage and standard availability various
attacks have been applied to AES. The first succesful atack
was a side channel attack [3]. Another attack based on key
relation allows in theory to fully break a ten round AES cryp-
tographic system [4]. Standard approaches such as differential
cryptanalysis or brute force have been all shown to be only
partially successful however the authors of [5] have shown a
method based on the man-in-the-middle attack that can recover
a whole encryption key.

Though direct attacks have been demonstrated as possible,
they currently remain computationally infeasible. Theoretical
analyses assessing the security of random S-boxes and the

complexity of AES rounds have shown resistance to various
attacks [6], [7].

Recently, with convolutional and deep neural networks
being applied to real-world problems, several attempts have
investigated the cryptanalysis of AES and related block ciphers
using machine learning approaches. While neural approaches
have succeeded in tackling simplified or older ciphers like
the Caesar cipher or DES, results for AES have been pre-
dominantly negative [8]–[11]. This discrepancy occurs despite
arithmetic operations being proven to be learnable to some
extent [12], [13].

To comprehend the complexities of learning AES, we con-
ducted a thorough analysis of the cipher and examined existing
theoretical results on the hardness of AES in relation to
machine learning paradigms. Specifically, we investigated the
potential learnability of AES or its components, the necessary
conditions for such learning, and the overall difficulty of AES
for machine learning-based deep neural models. The primary
objective of this paper is to train a set of neural models
that can decipher an AES-encrypted message without directly
recovering the secret key.

The main findings of our research are as follows: Through
extensive experimental evaluation, we demonstrate that AES
remains secure against deep neural models used in machine
learning. Furthermore, we show that it is possible to recover
the encryption/decryption network for small portions of the
AES system. Finally, we identify the vanishing gradient,
accelerated by the diffusion operators in the AES cipher, as
the primary obstacle in training such deciphering networks.

II. PREVIOUS WORK

The hardness of AES has undergone extensive mathe-
matical analysis, and multiple studies indicate its resistance
against machine learning approaches. However, it’s important
to acknowledge that these mathematical formulations often
come with strict bounds and assumptions to enable rigorous
theorem proving. For example, in a recent publication [7],
the authors demonstrated that given a random S-box, AES
remains secure against deciphering after four blocks. Similarly,
another study [6] adopted a similar approach and showed that
the output of the AES cipher closely resembles a uniform
distribution. Consequently, this finding makes it extremely
difficult to learn AES, as most machine learning methods have
demonstrated an inability to learn from random data.
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From a learning perspective, various authors have made
attempts to break AES using machine learning and neural
network-based methods. In a study by the authors of [8],
they successfully demonstrated the ability to learn the Caesar
cipher and the DES cipher through simple end-to-end learning.
Another study [9] focused on learning the FEISTEL cipher,
although the approach was not extensively evaluated with real-
world ciphers. Generally, the research on AES deciphering
using neurocryptanalysis has been primarily limited to reduced
problems or ciphers with reduced AES strength [11].

III. BACKGROUND

The AES cipher is a symmetric encryption algorithm com-
monly employed for high-throughput data encryption. It oper-
ates on blocks of 128 bits of input data. The input is structured
as a four-by-four matrix, where each entry represents a byte.
The AES cipher performs a series of discrete steps on this
two-dimensional array of bits.

The first step involves performing an XOR operation be-
tween the secret key and the input message. This step is
referred to as ”AddRoundKey” because the key used for the
XOR operation is derived from the initial secret key using
the round index of the AES algorithm. We can represent this
mapping mathematically as E : 2128 → 2128. Although this
mapping can be reduced in size due to the bitwise XOR
operation, it remains a one-to-one mapping.

The second operation in the AES cipher is the S-box substi-
tution. It involves the use of a reversible mapping denoted as
S : 28 → 28, which operates on GF(2) (Galois Field). The S-
box is a well-known component that functions as a standalone
substitution cipher and is also utilized in various cryptographic
methods. In the context of the AES cipher, the S-box serves
as a byte-wise diffusion operator, effectively mixing the bits
within individual bytes.

The third operation in an AES round is a reversible transfor-
mation known as the ShiftRows step. It involves shifting the
bytes in the 2D byte ordering to the left by a certain number of
positions based on their row index. Specifically, the first row
(index 0) remains unchanged, the second row is shifted one
position to the left, the third row is shifted two positions to the
left, and the fourth row is shifted three positions to the left.
This transformation can be represented as B : 2128 → 2128.

The last operator in an AES round is the MixColumns
operation, which is a reversible transformation based on Galois
field arithmetic. It operates column-wise on four bytes at a
time, performing a mapping denoted as M : 232 → 232.
This operation is also reversible and maintains a one-to-one
mapping between the input and output.

Encryption in AES is achieved by iterating over the four
blocks of data in a specific order. Each iteration over the
four operations is called a round and the number of iterations
differs based on the AES variant: ten for AES128, twelve for
AES192, and thirteen for AES256.

Apart from the number of iterations, there are other dif-
ferences between these modes. One distinction is the length
of the encryption key used, with AES128 using a 128-bit key,

AES192 using a 192-bit key, and AES256 using a 256-bit key.
Additionally, the key is transformed into the round key more
times in AES192 and AES256 compared to AES128.

IV. PROPOSED METHOD

An artificial neural network (ANN) is a class of algorithms
that utilize a distributed computing approach. It consists of
multiple layers, denoted as L = l1, . . . , lm, where each layer
contains a set of artificial neurons. These neurons perform
the summation of weighted input signals and apply a function
to the summed inputs to generate an output. The layers of
the ANN are connected by weights, represented by a weight
matrix Wkl that connects layers lk and ll. These weights
contain the information about the function being approximated
by the network.

This description represents a type of ANN commonly
referred to as a feed-forward network because it propagates
inputs from one side through the layers, and producing outputs
at the other side, output terminals. The ANN uses learning to
approximate a desired function, typically specified by a dataset
D = {(i1, t1), . . . , (ik, tk)} consisting of k input-output pairs.

The specific type of feed-forward ANN that we are focusing
on here employs backpropagation for learning. During back-
propagation learning, each input sample, denoted as i, from
the training dataset D is fed into the ANN. This allows the
information to propagate forward from the input layers to the
output layers. The output of the network, represented as oi,
is then compared to the corresponding output pair ti from
the dataset to compute an error E. Subsequently, this error
is propagated backward through the network, updating the
weights in the process. These weight updates aim to refine
the network’s learned knowledge.

In this work, neural models are applied to learn various
levels of the AES cipher. Let’s represent a single round of
AES as A : I → O, where A = E ◦ B ◦ S ◦ M. We
study the AES from three different mappings. We start with
the learning of the full AES cipher denoted as Aj , where j
indicates the number of rounds in the AES algorithm. Then
we proceed to learn and analyse individual rounds. Finally the
individual components of each round of the AES cipher. The
decomposition and various points of analysis are illustrated in
Figure 1.

The simplest AES implementation contains 10 rounds for
128-bit key, 12 rounds for 192-bit key and 14 rounds for 256-
bit key.

In this work we are focusing on AES with j = 10 (ten
rounds), using 128-bit key length in the ECB mode. This is
the simplest possible mode and serves as baseline for the AES
difficulty evaluation.

For learning the decryption using the neural models we
created two types of datasets. The first one will be referred
to as Dr and represents a dataset created randomly on the bit
level. A second dataset referred to as Dw represents the text
downloaded from Wikipedia. The text is not topic specific but
is used as is as a comparison to the randomly generated data.
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Fig. 1: The various points of analysis of AES

Each dataset is split into two parts, a train and a test dataset.
The train dataset size varies from 218 to 226 training samples
and the test dataset contains 216 testing samples. Each dataset
is encrypted using the AES 128 in the ECB mode.

To determine if an ANN has learned the correct function,
we utilize a standard accuracy measure defined as acc(D) =∑|D|

i=1 I(oTi ==oi)

|D| , where I denotes the indicator function. This
accuracy measure calculates the ratio of correctly predicted
outputs oi to the total number of samples in the dataset |D|.
However, it is important to note that in some experiments
where the learning outcome is negative, the accuracy may not
be reported. Instead, the focus may shift towards observing
the convergence of the learning process.

V. EXPERIMENTS AND RESULTS

To analyze the AES we performed a set of experiments
according to a workflow. The workflow is shown in Figure 2.

AES

Random, Text
Data

AES
Rounds

AES
Components

Combined
Components

Simplified
AES

Inverted
AES

Components

Combined
Simplified

AES

Backpropagator
AES
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d) e)
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Fig. 2: Chart of the various experiments run as a part of
understanding the learning and learning difficulty of the AES
cipher.

At first we analyze the AES as a block algorithm (Fig-
ure 2a)) by both learning from random and from text data,
then we look in details into the individual rounds of AES
(Figure 2b)) and experiment with various configurations of the
individual AES algorithm components (Figure 2c) and 2d)).
While the studying the individual rounds and its components,
we also investigated a set of simplified AES algorithms to
determine what are the boundaries of learning the AES. There-
fore we investigate various simplified versions of the AES
rounds (Figure 2(e)) and build various alternative models such
as Inverted components of AES rounds or AES backpropgators
(Figure 2f) and 2h)).

Recall that our target is to learn a model for various com-
ponents or even the whole AES: as such we are not looking to
recover the key but simply to substitute the AES components
by ANN models learned from input-output samples.

A. Learning the Cipher or Learning the Mapping

The first experiment conducted aimed to verify and de-
termine the extent to which the AES cipher can be learned
independently. Specifically, the focus was on learning the
mapping M−1 : C → T (as shown in Figure 1(a)) in a
text-independent manner. To achieve this, we evaluated two
different models in order to identify the most cost-effective
approach that potentially provides advantages in the learning
process.

The first model is a small convolutional neural network with
three convolutional layers, each having 64 convolutional input
filters of size 8 and three fully connected layers generating the
output. The second model is a fully connected three layered
Multi-Layer Perceptron with two hidden layers each with 1000
neurons.

The data prepared was based on the Dw. In order to force
the neural network into a data independent learning the initial
dataset Dw was either configured to a fixed size and denoted
by Dw or it was transformed into D†

w, a dataset that never
repeats any sample. This means that when using the dataset
D†

w the network would never see the same data twice during
training. The purpose of this experiment was to determine how
much of learning and how much of memorising a network is
doing while learning the AES cipher.

Fig. 3: The learning loss during training a ANN on growing
wiki data and fixed wiki data.
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Figure 3 shows the results of training a MLP on Dw and
D†

w. Note that both the loss and the evaluation accuracy remain
flat and without convergence. The loss and accuracy for fixed
amount of data shows some converging trends but the accuracy
of classification remains under 0.6. These results are similar
when learning the AES with purely random data from the Dr

dataset.
The results presented in this section clearly demonstrate that

none of the evaluated networks, regardless of the configuration,
were able to effectively learn the AES. The observed outcomes
can be classified into two categories: either the model con-
verged to complete memorization of the training dataset, or
the model failed to converge altogether.

B. Learning AES by Rounds

As the AES cipher could not be learned in its entirety,
the analysis shifted towards learning individual rounds. For
each round within AES128, a new dataset, denoted as Di

w,
was generated from the original dataset Dw. The index i
corresponds to the round of AES128 for which the dataset
was created. For example, D0

w contains samples with inputs
corresponding to the outputs of the first round of the AES
cipher and the plain text. However, it is noteworthy that the
learning in this experiment did not converge regardless of the
number of rounds used.

C. Breaking AES Rounds to components

Considering the lack of positive results in learning individ-
ual rounds independently, the next phase involved analyzing
the individual components of the AES rounds. The initial step
was to determine the learnability of each of the mappings: A,
B, S, and M. From a numerical standpoint, all these mappings
exhibit a one-to-one relationship, and there are no apparent
reasons why an ANN should not be capable of learning these
components of the AES rounds.

Before proceeding we looked at certain properties of each
of the four mappings. At first we looked at the cycles, that
is if any of the operation is its self inverse. For this purpose
we determine for each mapping the exponent leading to itself
under the following formulation U = Un. For B n = 138591,
for S n = 8, for M n = 4 and for E n = 22.

The cyclicity of each AES operation is intended to serve
as indicator of its complexity in the learning process. We
expect that higher exponent n is obtained the more difficult
the learning would be. We also expect that the cyclicity of
each operation will not be completely sufficient information
to estimate the learnability as for instance it has been shown
that learning cyclic arithmetic functions is quite difficult [?].
Therefore the cyclicity should at least partially be informative.

1) Add Round Key: The first investigation was to determine
the learnability of the E mapping. Conversely to the results on
its cyclicity , E can be learned from relatively small amount
of data to almost a 100% accuracy: an MLP with a single
hidden layer with 128 neurons is enough. To determine more
precisely its learnability we tested the needed amount of data
for training the neural model. The results are shown in Table I.

TABLE I: Results of training a simple fully connected neural
network in a dataset size depending manner for learning the
mapping E .

Dataset Size Accuracy

65536 0.9999994039596155
32768 0.9999980131987183
16384 0.9999980131987183
8192 0.9999819201083363
4096 0.9999455616448807
2048 0.9995315122577692
1024 0.9949042520726311
512 0.9497373051345303

2) Shift Rows: Similarly to E the row shifting S can be
learned using a single 128 neuron hidden layer without the
requirements of any special learning settings. Interestingly and
as expected, the simplest model of the AES round that contains
E ◦ S can be learned perfectly up to 100% of accuracy as
well. The low cyclicity of the mapping S again seems to be
correlated to the high accuracy of learning and to the small
amount of data required.

3) S-Box: The sub-bytes also known as the Rijndael S-box
is a byte-wise substitution cipher by itself with both inputs
and outputs being polynomials over the GF(2) Galois field.
Similarly to the shift bytes the S-box acts individually on every
byte of the text and transforms it by a value read from a look-
up table. The S-box transformation can be seen a a but-wise
diffusion operator on a byte-wise domain. The B is the one
component of the AES round with the highest cyclicity.

The S-box was experimentally determined to be learnable
using a MLP with a single hidden layer of 1000 neurons. The
model is a mapping from 28 → 28 on the outputs only.

4) Mix Columns: The mix-column operation is the one that
experimentally proved to be the hardest to learn. This is despite
the fact that is has the cyclicity of only n = 4. The most
interesting obsevration is that while learning the E or the B was
succesful, the learning of M did not work well. The specific
about mix-columns is that it does not need to be learned for
all 128 bits but rather for each column wise transformation
independently resulting in a reduced mapping M : 232 → 232.

The model used for learning mix columns for the transfor-
mation of a single column is a convolutional neural network
with the first layer being a 1d convolution containing 64 filters,
each of size 9 and a second layer containing 64 filters of kernel
size 3. In addition it has one hidden fully connected layer with
128 neurons and the output layer of either 8 or 32 outputs. The
first network evaluated was used to learn to output one byte
from 32 bits inputs and the second network was to learn the
full mapping M : 232 → 232. Each of the model was trained
and evaluated with the resulting accuracy of 0.9999 for eight
bits and 0.9530 for 32 bits.

A more optimized network with a size 8 of the kernels
in the first layer resulted in a higher accuracy of up 0.9999.
However, and interestingly the M−1 : O → I could not be
learned successfully.
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D. Building AES Rounds From Bottom Up
The models for the various components of the AES round

being available, the next step was to design a fully neural
model of the AES so that the learning of the E can be
evaluated. Because the expected difficulty and the obtained
negative results of end-to-end learning of the AES we decided
to start evaluating weaker AES rounds in order to understand
where the learning is failing. In addition, because both the
MixColumns mapping M−1 as well as SubByte mapping B−1

were not directly learnable and the only M can be learned we
decided to determine if we can simply learn the encryption of
the AES.

In addition, to understand the problem of the gradient
backpropagation we investigate first the general backpropa-
gation of the gradient in a much simpler size AES. For these
experiment s the target was to learn the encryption rather than
decryption. The reason was to determine if there is a difference
between encryption and decryption learning and if the result
of backpropagation would have similar shortfalls.

For the purpose of this study we built a fully neural model
of the AES round. Each of the modules M, B and S are
trained ahead of the time and verified for their accuracy. Then
only the E is to be learned directly from the data generated
(Figure 1(c)) using backpropagation of the error through the
pre-learned models of B, S and M to update the model of E
.

1) Neural AES Model Verification: As a first step we
decided to evaluate if a learned model would work at all.
Therefore we combined pre-learned models for each mapping
and evaluated its accuracy. The result for a full ten rounds
AES128 implemented from neural blocks in the task of
encryption and decryption is 0.9997.

2) Full Round Learning: The initial experiment is set up
to directly verify the learnability of single round of AES by
evaluating a set of composed neural models:

A1: Input→E→B→S→M→E→Output
A2: Input→E→B→S →M→Output
A3: Input→E→B→Output
A4: Input→E→M→Output
A5: Input→E→S→Output

The accuracy of the learning for the mappings A1 to A4 did
not converge and their evaluation accuracy remained ≈ 50%.
The only model that was able to learn the target E mapping
was A5 with 0.9999 accuracy.

Each neural model of the components of the AES round
has binary inputs and binary outputs. Such setting is however
problematic because of the learning: while each component
can be learned independently, forcing such a segmentation on
the model is however counterproductive.

This can be shown by instead of training a model A3 one
can directly train a model A′

3 : Input → E ◦ B → Output
with E ◦ B being trained as a single neural model. The result
of accuracy when evaluating the learned model A′

3 becomes
0.99.

One of the possible problems is that the training data is
purely binary while the backpropagation is in general using

floating point numbers. During inference however, each of the
pre-trained model requires an output thresholding so that the
correct binary outputs are obtained. Without such thresholding
in between the learning seems to be possible at least partially.

E. Backpropagation Analysis
At this stage the most important observed problem is the

related to the gradient backpropagation. While for E → S the
learning occurs, when using any of the two other diffusion
operators in a pre-trained form the learning does not happen.

Therefore in order to understand the learning dynamics
we sstart the analysis by constructing a set of models with
emphasis on the learning target location. Similarly to previous
experiments we used nueral blocks for each of the AES
components.

For each trained model, the B was pre-trained and multiple
rounds of AES were used to learn the E . First, models were
constructed such that the learnable network block E is closest
to the target output.

The first model Af was built using as the following order
of components: Text →B →S →E →Cipher (with B and S
being pre-trained) resulted in an accuracy of 99.99%. This is
an interesting result but the main merit of this shows that as
long as the error is directly behind the output of E , the learning
is very efficient.

The second evaluated model A0,f is given by Text →E0
→(B →S →E0) →Cipher. The maximum accuracy of learning
obtained was 68.66%.

Finally when the last model A2
f used was Text →(B →S

→Ei) x 2 rounds →Cipher, the accuracy obtained was 70.73%.
Of course when the B was not present the learning was

much more successful as seen on the following model Text
→(S →Ei) x 3 →Cipher with the accuracy of 99.84%.

B
◦S

B
◦S

B
◦S

In
p
u
t

E 1

O
u
tp
u
t

E 2 E 3

E
rr
or
Fig. 4: General schematic of providing each learnable mapping
Ej two feedbacks for learning.

1) Round Key Conditional Independence: Before delving
even deeper in the gradient propagation study, we decided to
determine if the conditional independence of the round key
would help. For this purpose we assume that the individual
round keys kj are conditionally independent on the initial key
k. Therefore for two rounds i and j the keys would have the
property (ki ⊥ kj |k). While this is a strong assumption and it
is expected to be incorrect it allows to provide more data to the
backpropagation of the error. Using a key k, being a 128 bit
string. Each round key kj is obtained from k by the scheduler.
As a result each learnable network for Ej receives the error
that is backropagated to it as well as the error obtained at the
end of the network chain. The schematic of this approach is
shown in Figure 4.
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(a) E is the first component in the
network

(b) E is the last component in the
network

2) Inversion Models: The backpropagation of the gradient
has several possible shortcomings. One of the standard prob-
lem is the vanishing gradient [14]. The vanishing gradient
is appears as a result of successive reduction of gradient
magnitude as a result of many derivatives during the back-
propagation.

In order to determine if the vanishing gradient is the
problem of the backpropagation, we implemented a set of
inverse network models. That is, instead of learning the target
mapping, we learned the inverse mapping. This implies that
when the backpropagation would occur across the neural
blocks, the gradient would be feed-forwarded as is rather than
backpropagated.

The usual model for neural computation and network error
backpropagation requires that the network itself is able to
generate floating point values on its inputs, when backpropa-
gating values not intended for its modification. However most
of the pre-trained models used such as ANN for B are not
well prepared for such a task as they are trained for strictly
binary inputs and outputs. Therefore in order to deal with this
problem we decided to implement the inverse model, with the
sole purpose of propagating backwards the gradients.

Let a backpropagated error be of the form ∂E
∂wij

on the
output of a neural network model simulating the E ◦ B
mappings. In order to get the gradient to the outputs of E
model it must be backpropagated through the fixed model B.
Instead of backpropagating the gradients, we build alternate
neural network performing the mapping shown in eq. 1

Bgrad :
∂E

∂wij
→ B−1 ◦ ∂E

∂wij
(1)

The evaluated model called A−1
0 is constructed from the

following order of components: Text →E0 →InverseMC
→InverseShift →InverseSB→Cipher. As expected however
this model does not learn at all. Variations on learning and
changing parameters did not have any effect on the learning
result. Therefore we consider that the problem of backpropa-
gation is not due to backpropagation itself but rather due to
the nature of the gradient and of the error function.

The first approach was only working again when the E was
the last component in the model. The result of learning can
be seen in Figure 5a and Figure 5b.

3) Local Gradients: The failure of conditionally indepen-
dent gradient backpropagation and of the inverse models
implies that the backpropagated information is not correct.
Therefore to determine the extent of the gradient loss through

the diffusion blocks, we performed a set of experiments where
we provide a basic gradient-guide to each E block. This is
performed as follows. Let ∂E

∂wij
be the gradient computed given

the error E obtained on the output of the studied block. For
instance, for the model M0 : E0 → M error E is computed
at the output of the E block. In addition let Ei be the error
computed directly at the ith block Ei. For the model M0 the
error E0 is computed directly at the output of the E0 block.
Then the gradient computed at the output of E0 as ∂E

∂wij
+ ∂E0

∂wij
.

The experiments shows that if the local data Di would be

Fig. 5: Learning AES rounds with local gradients.

available the backproagation problem persists and after five
rounds the learning remains still problematic such as shown
in Figure 4 (dotted dashed line). Figure 5 shows the results
of learning AES rounds. Each round is a full AES round
A : E ◦S ◦B ◦M. The learning experiment with the gradient-
guide was performed for three, four and five A rounds. The
dotted lines show the maximum accuracy that was achieved
by the learning and the full line show the evolution of the loss
during learning. As can be seen after five rounds, even with
the locally correct result, the learning failed completely with
accuracy of 50%.

F. Mixed Columns Backpropagation Analysis

The results of previous experiments confirmed that when
learning the AES deciphering or even encryption using the
ANNs suffers greatly when propagating the gradients neces-
sary for weights updates across the network M and B. In ad-
dition we also demonstrated that even with the gradient-guide
the learning fails after five rounds. This means that indeed
the backpropagation is suffering heavily during learning. In
addition the learning was most affected when the M mapping
was used in the AES round and therefore we reduced the AES
round to a simplest model.

We investigate the A0M model that contains only E◦M and
the A0M1 model containing E0◦M◦E1. At first we decided to
determine the difference between the gradients obtained using
the backpropagation through M and compare them with the
gradients calculated directly at the output of the E .

Figure 6 shows the difference between the gradients for the
model A0M . The graph shows the averaged difference between
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Fig. 6: Difference between gradients ∂El

∂w and ∂E
∂w

∂E0

∂w and ∂E
∂w for the first 500 learning epochs. As can be seen

the difference between the gradients slowly decreases to 0.01
which however given the gradients magnitude is a considerable
error. In fact during the learning the difference is anywhere
between 50% to 10% of the maximum values of the averaged
gradients. This illustrates that the backpropagated gradient not
only fails to properly backpropagate the values but is also
strongly reduced in magnitude.

Similarly when we compared the gradients from the model
A0M0 the difference was visible from the beginning. Figure 7
shows the gradient differences up to epoch 500 Figure 7a
and 7b for the first and second network learning the E
mapping.

(a) E1 (b) E2

(c) E1 (d) E2

Fig. 7: Difference between gradients ∂El

∂w and ∂E
∂w in an ARK-

M-ARK network system for the first ARK network (a) and (c)
and the second ARK network in (b) and (d) respectively.

The difference between the gradients magnitude becomes
much more visible when we plot the difference until the
point where the model using the local gradients converges
to a validation accuracy of 95%. This is shown in Figure 7c
and 7d. This result points to a failure of machine learning in
this model; the gradients backpropagated through the M are

simply attenuated to almost zero magnitude and therefore the
backpropagintg information is not reaching its goal.

This result is however very unexpected because the error
of the network is still high and the neural model for M is
not changing and is relatively small. Therefore the vanishing
gradient should not be happening at this stage.

As an illustration of this observation, Figure 8 shows the
gradients on every weight generated at 135 epoch of training
for each of the errors. The left column shows the gradients
magnitude on the each weight of the output layer of the
ARK network. The right columns shows the magnitude of
the weights. The top row shows the gradients and weights
obtained from backpropagation through the M network while
the bottom row shows the same data obtained directly from
local errors. The most notable difference is a) difference of
the magnitude between the two sets of gradients and b) the
difference between the magnitude of the weights. In both cases
the magnitude is higher when calculated directly from the local
error.

Fig. 8: Comparison on weight individual gradients during
one backpropagation during the epoch 135. Note that the
gradients obtained through backpropagation through M have
much lower magnitude and are very close to zero.

1) On Purpose Trained Backpropagation: To solve this
issue of vanishing gradients we learned the backpropagator
in a feedforward manner: this means that we train a specific
neural network to backpropagate the gradient across the pre-
trained blocks in the studied model. Note this is quite different
from the inverse model. The inverse model was simply an
inverse operation of the AES component algorithm. Here the
network is specifically trained on backpropagation data during
the learning of using standard pre-trained AES component
algorithms.

First, the analysis of the distribution of the gradient’s values
is shown in the histogram shown in Figure 10. The Figure 10a
shows the histogram of gradients obtained by the local error
and Figure 10b shows the gradients obtained as a result of
backpropagation. The plot shows the actual gradients (not
averaged values) of individual weights. The most important
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Fig. 9: The on-purpose trained backpropagator of the AES
gradients.

(a) E0 (b) E

Fig. 10: The histograms of gradienst a) from local error and
b) from backpropagation through the M network.

observation is the very low diversity and relatively well
grouped values of the gradients.

The results of training a network model on the gradient data
directly resulted at maximum in an accuracy of ≈ 38%. We
also attempted to train a model on a binned gradients so that
there are at most for classes of available outputs and reduced
the network model to a 32 × 32 input output mapping. The
result improved up to ≈ 47% for four classes. However the
main surprising result is that similarly to the case of the model
that contains E ◦ B, a model containing two networks E ◦M
can learn the decryption with relatively high accuracy when
both models are subject to training. In such a case the resulting
accuracy is 83% as compared to ≈ 50% when training only
the ARK model with M having its weights frozen.

G. Data Types

The final set of experiments are focused on the learning data.
As was shown previously training with randomly generated
data does not forces the network to learn the decryption
efficiently. In most cases, when learning larger AES blocks
(one full round or more) the results remain random. This
however should be expected because the purpose of the whole
AES cryptosystem is to generate the outputs as randomly
looking as possible and therefore minimizing the ability of
an attacker to gain any significant information from it.

Therefore we decided to learn the simplest components of
the AES system with text data scraped from various publicly
available web pages. Training a network for learning the
gradients distribution across the M model resulted in much
higher scores this time.

The first seet of experiments are The various results obtained
for the ANN used are shown in Table II. The network
evaluated this time was a ResNet-50 trained form scratch on
the scraped text data from wikipedia.

TABLE II: Evaluation of learning the gradients backpropaga-
tion using various data and various keys

Dataset Accuracy

Train Set Dw 94.59%
Eval Set Dw 76.26%
Eval Set Dr 60.26%
Eval Set D′

w 58.24%
Eval Set D′

r 62.21%

Fig. 11: LEarning the ARK→M network with pretrained
backpropagator (blue) and using backpropagation (orange)

The results in Table II show that indeed the learning of even
the gradients backpropagation are dataset and key dependent.
The highest accuracy obtained is when the trained gradient
backpropagator is evaluated on the same type of data encrypted
with the same key (76.26%). The lowest accuracy is when the
same data is encrypted with different key (58.24%). Using the
model for backpropagatio instead of backpropagation works
for learning the encryption on the same key with wikipedia
data(128→ARK→MC→128 model). The result of learning
is shown in Figure 11. The orange line shows the loss
during learning using backropagation and blue line shows
the learning loss when using the model for propagating the
gradients. The validation accuracy of the model trained with
backpropagation resulted in validation error of 32% while
using the backpropagation network the resulting validation
accuracy is 92%. However, using the model while trying to
learn random data encrypted with another key, the loss does
not improve, validation error still stuck at 50

VI. CONCLUSION

In this paper we showed empirically the limits of neural
cryptanalysis on the AES 128 encryption system. The ex-
periments have shown that despite the deep learning models
having achieved great advancements on the processing of
real-world and noisy data the learning of artificial systems
with specific properties remains a challenge. The evaluated
methodology has shown that as it stands the AES128 cipher
is resistant due to specific components such as mainly the M
and less due to the B components that prevent the required
backpropagation for learning. These difussion operators oper-
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ating in the Galois Field are difficult to simulate for neural
networks but as has been shown the decription can be learned
for single round of AES when started from pre-trained models
and adapts all of the components.
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