
Various QUBO Formulations of the
Graph Isomorphism Problem and Related Problems

Daisuke Takafuji
Shunan University

843-4-2 Gakuendai,
Shunan City, 745-8566, JAPAN

Koji Nakano and Yasuaki Ito
Hiroshima University
1-4-1 Kagamiyama,

Higashi Hiroshima City, 739-8527, JAPAN

Takashi Yazane, Junko Yano, Takumi Kato, Shiro Ozaki, Rie Mori and Ryota Katsuki
Research and Development Headquarters, NTT DATA Group Corporation

Toyosu Center Bldg, Annex, 3-9, Toyosu 3-chome, Koto-ku, Tokyo 135-8671, Japan

Abstract—Quadratic Unconstrained Binary Optimization
(QUBO) is a combinatorial optimization to find an optimal binary
solution vector that minimizes the energy value defined by a
quadratic formula of binary variables in the vector. The graph
isomorphism problem is one of the applications of combinatorial
optimization, and is not known to be solvable in polynomial time.
The problem is also not known to be NP-complete. We propose
four QUBO formulations for graph isomorphism problem in-
stances. We also propose four QUBO formulations for induced
subgraph isomorphism problem instances and two QUBO for-
mulations for subgraph isomorphism problem instances, which
are NP-complete problems. We solve QUBO instances defined by
our QUBO formulations, using known QUBO solvers: Gurobi
optimizer, Fixstars Amplify AE and OpenJij with SA.

Index Terms—Quantum computing, combinatorial optimiza-
tion, graph isomorphism, QUBO solvers

I. INTRODUCTION

A Quadratic Unconstrained Binary Optimization (QUBO)
problem is defined by an upper triangular matrix W = (Wi,j)
(0 ≤ i ≤ j ≤ n− 1) of size n× n. A QUBO problem W =
(Wi,j) aims to find a binary vector X = (xi) (xi ∈ {0, 1} for
all i (0 ≤ i ≤ n − 1)) that minimizes the energy defined as
the sum of quadratic terms of X as follows:

E(X) =
∑

0≤i≤j≤n−1

Wi,jxixj + C,

where C is a constant called offset. It is known that many
NP-hard problems can be reduced to QUBO problems [1].
A QUBO problem can be considered a minimum subgraph
problem [2]. For a given n-bit QUBO problem W =
(Wi,j), we consider a weighted undirected graph with vertices

𝑥0

𝑥1

𝑥3

𝑥4

𝑥2 +2

+4

+1

−1

+1

−1

−1

−4

−2

−2

−3

𝑥0

𝑥1

𝑥3

𝑥4

𝑥2 +2

+4

+1

−1

+1

−1

−1

−4

−2

−2

−3

(a) Weighted undirected graph (b) Minimum subgraph

Fig. 1. The weighted undirected graph corresponding to a QUBO problem
and the minimum subgraph corresponding to an optimal QUBO solution.

0, 1, . . . , n − 1 and vertices i and j are connected with an
edge (i, j) if Wi,j ̸= 0. We assume that every vertex i and
every edge (i, j) take weights Wi,i and Wi,j , respectively. In
other words, W = (Wi,j) is the weight matrix of the graph.
For simplicity, we assume weights Wi,j’s are integers. For
an n-bit vector X = (xi), we consider that each vertex i
is selected as a subgraph vertex if xi = 1. Figure 1 shows
an example of a weighted undirected graph. The minimum
subgraph consists of vertices x0, x1, and x4, and the total
weight is −1+1+1+(−4)+(−2) = −5, which corresponds to
an optimal solution X = [1, 1, 0, 0, 1] of the QUBO problem.

In this paper, we propose QUBO formulations to solve
three problem: the graph isomorphism problem, the induced
subgraph isomorphism problem, and the subgraph isomor-
phism problem. Our idea of QUBO formulations is to archive
constraints by giving rewards and penalties. Also, we solve
QUBO instances defined by our QUBO formulations, using
known QUBO solvers: Gurobi optimizer, Fixstars Amplify AE
and OpenJij with SA.

First, we introduce the graph isomorphism problem. Two
graphs H1 = (V1, E1) and H2 = (V2, E2) are isomorphic if
and only if there is a bijection f : V1 → V2 such that there
is an edge in H1 between two vertices u, v ∈ V1 if and only
if there is an edge in H2 between two vertices f(u), f(v) ∈
V2. That is, (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2 holds for
any vertices u, v ∈ E1. We can also define that one graph is
isomorphic to another graph.

H1 = (V1, E1) H2 = (V2, E2)

𝑣4

𝑣7

𝑣3

𝑣6 𝑣1

𝑣5

𝑣2

𝑢1

𝑢5

𝑢7

𝑢6

𝑢3 𝑢4

𝑢2

Fig. 2. Two graphs H1 and H2. These graphs are isomorphic, because there
is a bijection f : V1 → V2 shown in Table I.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 46 –

Figure 2 illustrates two graphs H1, H2, which are isomor-
phic, because there is a bijection f : V1 → V2 shown in
Table I. As shown in Table I, each vertex of H1 can correspond
to the vertex of H2 with the same color. Then, (u, v) ∈ E1
⇐⇒ (f(u), f(v)) ∈ E2 holds for any u, v ∈ E1. For example,
both (v1, v2) ∈ E1 and (f(v1), f(v2)) ∈ E2 hold because
of f(v1) = u3 and f(v2) = u2. Also, both (v4, v5) ̸∈ E1
and (f(v4), f(v5)) ̸∈ E2 hold because of f(v4) = u1 and
f(v5) = u4.

TABLE I
A BIJECTION f : V1 → V2 FOR TWO GRAPHS H1 AND H2 ILLUSTRATED

IN FIG. 2.

v ∈ V1 f(v) ∈ V2

v1 u3
v2 u2
v3 u7

v ∈ V1 f(v) ∈ V2

v4 u1
v5 u4

v ∈ V1 f(v) ∈ V2

v6 u6
v7 u5

The graph isomorphism problem is a decision problem,
defined as follows:
Graph isomorphism problem
Instance: Two graphs.
Output: Determine whether two graphs are isomorphic.

The graph isomorphism problem is not known to be solvable
in polynomial time nor to be NP-complete [3]. It is known that
the graph isomorphism problem is in class NP.

Next, we pay attention to an induced subgraph of a graph.
Let H be a graph, and V ′ be a subset of vertices of H .
The induced subgraph of H and V ′ is defined by the graph,
consisting of V ′ and the set of all edges whose endvertices
are in V ′. The induced subgraph isomorphism problem is a
decision problem, defined as follows:
Induced subgraph isomorphism problem
Instance: A guest graph and a host graph.
Output: Determine whether the host graph has a vertex set such
that an induced subgraph of the host graph and the vertex set
is isomorphic to the guest graph.

A guest graph G2 A host graph H1

𝑢1

𝑢2

𝑢4

𝑢5

𝑢3

𝑣4

𝑣7

𝑣3

𝑣6 𝑣1

𝑣5

𝑣2

Fig. 3. The induced subgraph of a host graph H1 and {v1, v2, v5, v6, v7} is
isomorphic to a guest graph G2, because each vertex of G2 can correspond
to the vertex of H1 with the same color.

Figure 3 illustrates an induced subgraph isomorphism prob-
lem instance. We focus on an induced subgraph of H1

and {v1, v2, v5, v6, v7}. The induced subgraph has an edge
set {(v1, v2), (v1, v5), (v1, v6), (v2, v7), (v5, v7), (v6, v7)},
because of the definition of an induced subgraph. From
Figure 3, we can see that the induced subgraph is iso-
morphic to the graph G2. Indeed, there is a bijection f :

{u1, u2, u3, u4, u5} → {v1, v2, v5, v6, v7} such that f(u1) =
v1, f(u2) = v7, f(u3) = v2, f(u4) = v5 and f(u5) =
v6. Then, G2 has the edge (u1, u3) and H1 has the edge
(f(u1), f(u3)), because of f(u1) = v1 and f(u3) = v2.
Also, G2 does not have the edge (u4, u5) and H1 does not
have the edge (f(u4), f(u5)), because of f(u4) = v5 and
f(u5) = v6. If the induced subgraph isomorphism problem
instance consists of a guest graph G2 and a host graph H1,
the optimal solution is “YES”. It is known that the induced
subgraph isomorphism problem is NP-complete [4].

Finally, we introduce the subgraph isomorphism problem.
We consider a subgraph of a graph, consisting of subsets of
both vertices and edges of the graph. The subgraph isomor-
phism problem is also a decision problem, defined as follows:
Subgraph isomorphism problem
Instance: A guest graph and a host graph.
Output: Determine whether the host graph includes a subgraph,
isomorphic to the guest graph. Note that a subgraph of the host
graph consists of a subset of vertices and a subset of edges, in
which endvertices in the subset of vertices of the host graph.

A guest graph G1 A host graph H1

𝑢1

𝑢2 𝑢5

𝑢4𝑢3 𝑣4

𝑣7

𝑣3

𝑣6 𝑣1

𝑣5

𝑣2

Fig. 4. The subgraph of H1 is isomorphic to the graph G1, because each
vertex of G1 can correspond to the vertex with the same color of H1 and
each edge of G1 can correspond to the red edge of H1.

Figure 4 illustrates a subgraph isomorphism problem in-
stance. We define a subgraph of H1 by a vertex set
{v1, v2, v3, v6, v7} and an edge set {(v1, v2), (v2, v3),
(v3, v7), (v6, v7), (v1, v6)}. From Figure 4, we can see that
the subgraph is isomorphic to the graph G1. Clearly, there
is a bijection f : {u1, u2, u3, u4, u5} → {v1, v2, v3, v6, v7}
such that f(u1) = v1, f(u2) = v3, f(u3) = v6, f(u4) = v2
and f(u5) = v7. For example, G1 has the edge (u1, u3) and
the subgraph of H1 has the edge (f(u1), f(u3)), because of
f(u1) = v1 and f(u3) = v6. Also, G1 does not have the
edge (u4, u5) and the subgraph of H1 does not have the edge
(f(u4), f(u5)), because of f(u4) = v2 and f(u5) = v7.
We note that the subgraph of H1 does not have the edge
(f(u4), f(u5)), though H1 has the edge (f(u4), f(u5)). If
the subgraph isomorphism problem instance consists of a guest
graph G1 and a host graph H1, the optimal solution is “YES”.
It is known that the subgraph isomorphism problem is NP-
complete [4].

For the graph isomorphism problem, the induced subgraph
isomorphism problem, and the subgraph isomorphism prob-
lem, QUBO formulations are proposed in [5], [6]. For the
induced subgraph isomorphism problem, efficient QUBO for-
mulations are proposed in [7]. Moreover, QUBO formulations

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 47 –

for many optimization problems are proposed, and references
are shown in [8].

II. QUBO FORMULATIONS FOR GRAPH ISOMORPHISM
PROBLEM

We introduce the graph isomorphism problem again.
Graph isomorphism problem
Instance: Two graphs H1 = (V1, E1), H2 = (V2, E2).
Output: Determine whether H1 and H2 are isomorphic, that
is, there is a bijection f : V1 → V2 such that (u, v) ∈ E1 ⇐⇒
(f(u), f(v)) ∈ E2 for any u, v ∈ V1.

We propose four QUBO formulations for the graph isomor-
phism problem. We write V1 and V2 for the number of vertices
of the graph H1 and H2, respectively. We define QUBO vector
X of size V1 × V2 by X = (x0,0, x0,1, . . . , x0,V2−1, x1,0,
x1,1, . . . , x1,V2−1, . . . , xV1−1,0, xV1−1,1, . . . , xV1−1,V2−1).
The condition xi,j = 1 signifies that the function f maps
a vertex vi in V1 to a vertex vj in V2, that is, f(vi) = vj . To
define one-hot encoding, we use the following B(X):

B(X) =

V2−1∑
j=0

(

V1−1∑
i=0

xi,j − 1)2 +

V1−1∑
i=0

xi,j(

V2−1∑
j=0

xi,j − 1)

We describe our idea of QUBO formulations as follows.
To define our QUBO formulations, we give rewards to propo-
sitions to be satisfied and give penalties to propositions not
to be satisfied. From the definition of the graph isomorphism
problem, two graphs H1 and H2 are isomorphic if and only
if there is a bijection f : V1 → V2 such that (u, v) ∈ E1 ⇐⇒
(f(u), f(v)) ∈ E2 for any u, v ∈ E1.

From the proposition that (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈
E2, the propositions to be satisfied are as follows: (u, v) ∈ E1
=⇒ (f(u), f(v)) ∈ E2, and (u, v) ̸∈ E1 =⇒ (f(u), f(v)) ̸∈
E2.

The propositions not to be satisfied are as follows: (u, v) ∈
E1 =⇒ (f(u), f(v)) ̸∈ E2, and (u, v) ̸∈ E1 =⇒ (f(u), f(v)) ∈
E2.

First, we select the proposition to be satisfied as follows:
(u, v) ∈ E1 =⇒ (f(u), f(v)) ∈ E2. Providing rewards for
the constraints of the proposition to be satisfied, we define
the energy function shown in Eq. (1), called by QUBO
formulation A.

E(X) =−
∑

(i,j)∈E1

∑
(i′,j′)∈E2

xi,i′xj,j′ +B(X) (1)

Next, we select the proposition not to be satisfied as follows:
(u, v) ̸∈ E1 =⇒ (f(u), f(v)) ∈ E2. Providing penalties
for the constraints of the proposition not to be satisfied, we
define the energy function shown in Eq. (2), called by QUBO
formulation B.

E(X) = +
∑

(i,j) ̸∈E1

∑
(i′,j′)∈E2

xi,i′xj,j′ +B(X) (2)

We select the proposition not to be satisfied as follows:
(u, v) ∈ E1 =⇒ (f(u), f(v)) ̸∈ E2. Providing rewards for
the constraints of the proposition not to be satisfied, we

define the energy function shown in Eq. (3), called by QUBO
formulation C.

E(X) = +
∑

(i,j)∈E1

∑
(i′,j′) ̸∈E2

xi,i′xj,j′ +B(X) (3)

Finally, we select the proposition to be satisfied as follows:
(u, v) ̸∈ E1 =⇒ (f(u), f(v)) ̸∈ E2, Providing rewards for
the constraints of the proposition to be satisfied, we define
the energy function shown in Eq. (4), called by QUBO
formulation D.

E(X) =−
∑

(i,j)̸∈E1

∑
(i′,j′) ̸∈E2

xi,i′xj,j′ +B(X) (4)

We discuss our QUBO formulations. We write E1 and E2

for the number of edges of the graph H1 and H2, respectively.
Let A1 = 1

2V1(V1 − 1) and A2 = 1
2V2(V2 − 1). In this

paper, we suppose that two graphs H1, H2 including in a
graph isomorphism problem instance satisfies V1 = V2 and
E1 = E2. If V1 ̸= V2 or E1 ̸= E2, there is not a bijection
f : V1 → V2, that is, two graphs H1, H2 are not isomorphic.
When an instance consists of two graphs H1, H2 with V1 ̸= V2

or E1 ̸= E2, the optimal solution for the graph isomorphism
problem is clearly “No”. Hence, we suppose that a graph
isomorphism problem instance consists of two graphs H1, H2

with both V = V1 = V2 and E = E1 = E2. We note that
A = AG = AH .

TABLE II
OPTIMAL SOLUTIONS AND THE NUMBER OF NON-ZERO ENTRIES IN
QUBO MATRICES, OF OUR QUBO FORMULATIONS FOR THE GRAPH

ISOMORPHISM PROBLEM INSTANCES.

Optimum ♯ of non-zero entries in QUBO matrices
QUBO Form. A −E (V − 1)V 2 + 2E2

QUBO Form. B 0 (V − 1)V 2 + 2E(A− E)
QUBO Form. C 0 (V − 1)V 2 + 2E(A− E)
QUBO Form. D −(A− E) (V − 1)V 2 + 2(A− E)2

Table II shows the optimum, that is, the minimum energy, of
our QUBO formulations. We can see that the minimum energy
of QUBO Formulations A and D depend on the size of an input
graph. We can represent our QUBO formulation E(X) in the
form of a QUBO matrix. Hence, Table II shows the number
of non-zero entries in the QUBO matrices corresponding to
instances for the graph isomorphism problem. From Table II,
we can obtain the following remark.

Remark 1: If E < A
2 , the number of non-zero entries in

the QUBO matrix of QUBO Formulation A is the smallest
among our QUBO formulations. If E > A

2 , the number of
non-zero entries in the QUBO matrix of QUBO Formulation D
is the smallest among our QUBO formulations. If E = A

2 , the
number of non-zero entries in the QUBO matrix of our QUBO
formulations are equal.

III. QUBO FORMULATIONS FOR INDUCED SUBGRAPH
ISOMORPHISM PROBLEM

We show the induced subgraph isomorphism problem again.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 48 –

Induced subgraph isomorphism problem
Instance: A guest graph G = (VG, EG) and a host graph H =
(VH , EH).
Output: Determine whether H has a vertex set such that an
induced subgraph of H and the vertex set is isomorphic to
G. In other words, determine whether there is an injection
f : VG → VH such that (u, v) ∈ EG ⇐⇒ (f(u), f(v)) ∈ EH
for any u, v ∈ VG.

We propose four QUBO formulations for the induced sub-
graph isomorphism problem. We write VG and VH for the
number of vertices of the graph G and H , respectively. We
define QUBO vector X of size VG × VH by X = (x0,0,
x0,1, . . . , x0,VG−1, x1,0, x1,1, . . . , x1,VG−1, . . . , xVH−1,0,
xVH−1,1, . . . , xVH−1,VG−1). The condition xi,j = 1 signifies
that the function f maps a vertex vi in VG to a vertex vj in
VH , that is, f(vi) = vj . To achieve one-hot encoding, we use
the following S(X):

S(X) =

VG−1∑
j=0

(

VH−1∑
i=0

xi,j − 1)2 +

VH−1∑
i=0

xi,j(

VG−1∑
j=0

xi,j − 1),

We describe our idea of QUBO formulations as follows.
To define our QUBO formulations, we give rewards to propo-
sitions to be satisfied and give penalties to propositions not
to be satisfied. From the definition of the induced subgraph
isomorphism problem, the induced subgraph of H and a vertex
set of H is isomorphic to G if and only if there is an injection
f : VG → VH such that (u, v) ∈ EG ⇐⇒ (f(u), f(v)) ∈ EH
for any u, v ∈ VG.

From the proposition that (u, v) ∈ EG ⇐⇒ (f(u), f(v)) ∈
EH , the propositions to be satisfied are as follows: (u, v) ∈ EG
=⇒ (f(u), f(v)) ∈ EH , and (u, v) ̸∈ EG =⇒ (f(u), f(v)) ̸∈
EH . The propositions not to be satisfied are as follows:
(u, v) ∈ EG =⇒ (f(u), f(v)) ̸∈ EH , and (u, v) ̸∈ EG =⇒
(f(u), f(v)) ∈ EH .

First, we select two propositions to be satisfied as follows:
(u, v) ∈ EG =⇒ (f(u), f(v)) ∈ EH and (u, v) ̸∈ EG =⇒
(f(u), f(v)) ̸∈ EH . Providing rewards the constraints of the
propositions to be satisfied, we define the energy function
shown in Eq. (5), called by QUBO formulation A.

E(X) =−
∑

(i,j)∈EG

∑
(i′,j′)∈EH

xi,i′xj,j′

−
∑

(i,j) ̸∈EG

∑
(i′,j′)̸∈EH

xi,i′xj,j′ + S(X) (5)

Next, we select two propositions not to be satisfied as
follows: (u, v) ∈ EG =⇒ (f(u), f(v)) ̸∈ EH and (u, v) ̸∈ EG
=⇒ (f(u), f(v)) ∈ EH . Providing penalties for the constraints
of the propositions not to be satisfied, we define the energy
function shown in Eq. (6), called by QUBO formulation B.

E(X) = +
∑

(i,j)∈EG

∑
(i′,j′)̸∈EH

xi,i′xj,j′

+
∑

(i,j)̸∈EG

∑
(i′,j′)∈EH

xi,i′xj,j′ + S(X) (6)

We select the propositions to be satisfied as follows:
(u, v) ∈ EG =⇒ (f(u), f(v)) ∈ EH . We also select the
propositions not to be satisfied as follows: (u, v) ̸∈ EG =⇒
(f(u), f(v)) ∈ EH . We provide rewards for the constraints of
the proposition to be satisfied. We provide penalties for the
constraints of the propositions not to be satisfied. As a result,
we define the energy function shown in Eq. (7), called by
QUBO formulation C.

E(X) =−
∑

(i,j)∈EG

∑
(i′,j′)∈EH

xi,i′xj,j′

+
∑

(i,j)̸∈EG

∑
(i′,j′)∈EH

xi,i′xj,j′ + S(X) (7)

Finally, We select the propositions to be satisfied as follows:
(u, v) ̸∈ EG =⇒ (f(u), f(v)) ̸∈ EH . We also select the
propositions not to be satisfied as follows: (u, v) ∈ EG =⇒
(f(u), f(v)) ̸∈ EH . We provide rewards for the constraints of
the proposition to be satisfied. We provide penalties for the
constraints of the propositions not to be satisfied. As a result,
we define the energy function shown in Eq. (8), called by
QUBO formulation D.

E(X) =−
∑

(i,j)̸∈EG

∑
(i′,j′) ̸∈EH

xi,i′xj,j′

+
∑

(i,j)∈EG

∑
(i′,j′) ̸∈EH

xi,i′xj,j′ + S(X) (8)

We discuss our QUBO formulations of the induced subgraph
isomorphism problem instances. We write EG and EH for
the number of edges of the graph G and H , respectively. Let
AG = 1

2VG(VG−1) and AH = 1
2VH(VH−1). Table III shows

the optimum, that is, the minimum energy, of QUBO instances
generated by our QUBO formulations. We can see that the
minimum energy of instances by QUBO Formulations A, C,
and D depend on the size of a guest graph. We can represent
our QUBO formulation E(X) in the form of a QUBO matrix.
Hence, Table III also shows the number of non-zero entries in
QUBO matrices. From Table III, we can obtain the following
remark.

Remark 2: If EH < AH

2 , the number of non-zero entries in
the QUBO matrix of QUBO Formulation C is the smallest
among our four QUBO formulations. If EH > AH

2 , the
number of non-zero entries in the QUBO matrix of QUBO
Formulation D is the smallest among our four QUBO formu-
lations. If EH = AH

2 , the number of non-zero entries in the
QUBO matrix of our four QUBO formulations are equal.

IV. QUBO FORMULATIONS FOR SUBGRAPH
ISOMORPHISM PROBLEM

We introduce the subgraph isomorphism problem again.
Subgraph isomorphism problem
Instance: A guest graph G = (VG, EG) and a host graph
H = (VH , EH).
Output: Determine whether there is a subgraph of H which is
isomorphic to G, where a subgraph of H consists of subsets of
both vertices and edges of H . In other words, determine where

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 49 –

TABLE III
OPTIMAL SOLUTIONS AND THE NUMBER OF NON-ZERO ENTRIES IN

QUBO MATRICES, OF OUR QUBO FORMULATIONS FOR THE INDUCED
SUBGRAPH ISOMORPHISM PROBLEM INSTANCES.

Optimum ♯ of non-zero entries in QUBO matrices
QUBO −AG

1
2
(VG +HG − 2)VGVH

Form. A +2AG(AH − EH)− 2EG(AH − 2EH)

QUBO 0 1
2
(VG +HG − 2)VGVH

Form. B +2AGEH + 2EG(AH − 2EH)

QUBO −EG
1
2
(VG +HG − 2)VGVH

Form. C +2AGEH

QUBO −(AG − EG) 1
2
(VG +HG − 2)VGVH

Form. D +2AG(AH − EH)

there is an injection f : VG → VH such that (u, v) ∈ EG =⇒
(f(u), f(v)) ∈ EH for any u, v ∈ VG.

We propose two QUBO formulations for the subgraph
isomorphism problem. We use the same notations as Sec-
tion III, and we write them again. Let VG and VH be the
number of vertices of the graph G and H , respectively. We
define QUBO vector X of size VG × VH by X = (x0,0,
x0,1, . . . , x0,VG−1, x1,0, x1,1, . . . , x1,VG−1, . . . , xVH−1,0,
xVH−1,1, . . . , xVH−1,VG−1). The condition xi,j = 1 signifies
that the function f maps a vertex vi in VG to a vertex vj
in VH , that is, f(vi) = vj . As well as the induced subgraph
isomorphism problem, we use the following S(X) to archive
one-hot encoding:

S(X) =

VG−1∑
j=0

(

VH−1∑
i=0

xi,j − 1)2 +

VH−1∑
i=0

xi,j(

VG−1∑
j=0

xi,j − 1)

We describe our idea of QUBO formulations as follows. To
define our QUBO formulations, we give rewards to proposi-
tions to be satisfied and give penalties to propositions not to
be satisfied. From the definition of the subgraph isomorphism
problem, the subgraph of H is isomorphic to G if and only if
there is an injection f : VG → VH such that (u, v) ∈ EG =⇒
(f(u), f(v)) ∈ EH for any u, v ∈ VG. Clearly, the proposition
to be satisfied is (u, v) ∈ EG =⇒ (f(u), f(v)) ∈ EH .
The proposition not to be satisfied is (u, v) ∈ EG =⇒
(f(u), f(v)) ̸∈ EH .

First, we select the proposition to be satisfied as follows:
(u, v) ∈ EG =⇒ (f(u), f(v)) ∈ EH . Providing rewards for
the constraints of the proposition to be satisfied, we define
the energy function shown in Eq. (9), called by QUBO
formulation A.

E(X) =−
∑

(i,j)∈EG

∑
(i′,j′)∈EH

xi,i′xj,j′ + S(X) (9)

Next, we select the proposition not to be satisfied as follows:
(u, v) ∈ EG =⇒ (f(u), f(v)) ̸∈ EH . Providing penalties
for the constraints of the proposition not to be satisfied, we
define the energy function shown in Eq. (10), called by QUBO
formulation B.

E(X) = +
∑

(i,j)∈EG

∑
(i′,j′) ̸∈EH

xi,i′xj,j′ + S(X) (10)

TABLE IV
OPTIMAL SOLUTIONS AND THE NUMBER OF NON-ZERO ENTRIES IN

QUBO MATRICES, OF OUR QUBO FORMULATIONS FOR THE SUBGRAPH
ISOMORPHISM PROBLEM INSTANCES.

Optimum ♯ of non-zero entries in QUBO matrices
QUBO Form. A −EG

1
2
(VG +HG − 2)VGVH

+2EGEH

QUBO Form. B 0 1
2
(VG +HG − 2)VGVH

+2EG(AH − EH)

We discuss our QUBO formulations for the subgraph iso-
morphism problem instances. Let EG and EH be the number
of edges of the graph G and H , respectively. Let AG =
1
2VG(VG − 1) and AH = 1

2VH(VH − 1). Table IV shows the
optimum, that is, the minimum energy, of QUBO instances
generated by our QUBO formulations. We can see that the
minimum energy of instances by QUBO Formulation A de-
pends on the number of edges of a guest graph. Also, Table IV
shows the number of non-zero entries in QUBO matrices for
the subgraph isomorphism problem. From Table IV, we can
obtain the following remark.

Remark 3: If EH < AH

2 , the number of non-zero entries
in the QUBO matrix of QUBO Formulation A is smaller than
that of QUBO Formulation B. If EH > AH

2 , the number of
non-zero entries in the QUBO matrix of QUBO Formulation B
is smaller than that of QUBO Formulation A. If EH = AH

2 ,
the number of non-zero entries in the QUBO matrix of QUBO
Formulation B is equal to that of QUBO Formulation A.

V. EXPERIMENT RESULTS

We solve QUBO instances defined by our formulations
using QUBO solvers: Gurobi optimizer, Fixstars Amplify AE,
and OpenJij with SA. Gurobi optimizer [9] is a commercial
Mixed Integer Programming (MIP) solver supporting quadratic
objectives, which can solve QUBO problems. Fixstars Amplify
AE [10] is a Cloud Platform for Quantum Annealing using
GPUs. OpenJij [11] is a heuristic optimization library for the
Ising model and QUBO. Both Gurobi and OpenJij run on an
Intel Xeon Platinum 8358 CPU with 32 physical cores.

For the three problems in this paper, we generate problem
instances so as to all optimal solutions are “YES”. Every
problem instance consists of regular graphs. A graph is regular
if any vertices of the graph have the same number of edges.
A δ-regular graph means that each vertex of the graph has δ
edges. To generate regular graphs, we use Network Analysis
in Python [12], called NetworkX [13].

We terminate QUBO solvers when the QUBO solver finds
the optimal solution or the computing time is over 100 sec-
onds. We run Gurobi once per instance, and we can obtain one
solution. On the other hand, we run Amplify AE and OpenJij
10 times per instance. Hence, we can obtain 10 solutions each,
and we use average solutions.

A. Graph Isomorphism Problem

We describe how to generate graph isomorphism problem
instances. We generate a random regular graph, and generate

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 50 –

TABLE V
THE NUMBER OF NON-ZERO ENTRIES IN W⟨i,j⟩,⟨k,l⟩ AND SOLUTIONS OF QUBO INSTANCES FROM GRAPH ISOMORPHISM PROBLEM INSTANCES,

OBTAINED BY QUBO SOLVERS.

Instance Two 90-node 22-regular graphs
of non-zero QUBO Form. A QUBO Form. B QUBO Form. CQUBO Form. D

entries 2,689,200 6,698,700 6,698,700 18,909,450
energy energy energy energy

Optimum −990 0 0 −3015
Gurobi −990 59 58 −2662

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Amplify AE −990 (10) 0 (10) 0 (10) −2291.2 (0)
OpenJij −302.2 (0) 59.2 (0) 59.2 (0) −1433.7 (0)

Two 90-node 68-regular graphs
QUBO Form. A QUBO Form. B QUBO Form. CQUBO Form. D

19,456,200 6,512,400 6,512,400 2,515,050
energy energy energy energy

−3060 0 0 −945
−2703 58 58 −945
Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

−2543.4 (0) 0 (10) 0 (10) −945 (10)
−1510.9 (0) 59.4 (0) 58.8 (0) −283.2 (0)

another regular graph by shuffling vertices of the regular graph.
As a result, the two regular graphs are isomorphic. The optimal
solution for the instance consisting of the two regular graphs is
“Yes”. Hence, the optimal solution of QUBO for the instance
is equal to the optimal energy. We generate two instances:
one consists of two 90-node 22-regular graphs with 990 edges
each, and the other consists of two 90-node 68-regular graphs
with 3060 edges each. Clearly, each QUBO vector is 8000 bits.

Table V shows the number of non-zero entries in QUBO
matrices defined by our four QUBO formulations of the graph
isomorphism problem. Table V also shows average solutions
obtained by Amplify AE and OpenJij. Because Gurobi runs
once per instance, Table V shows one solution per instance for
Gurobi. In Table V, the number in the parenthesis represents
the number of optimal solutions obtained by Amplify AE or
OpenJij. When the number of non-zero entries in the QUBO
matrix is large, Gurobi, Amplify AE, and OpenJij cannot find
the optimum within 100 seconds. We note that OpenJij cannot
find it even if the number of non-zero entries in the QUBO
matrix is small.

B. Induced Subgraph Isomorphism Problem and Subgraph
Isomorphism Problem

We describe how to generate instances consisting of a guest
graph and a host graph such that a guest graph, say G, is a VG-
node δg-regular graph and a host graph, say H , is VH -node
δh-regular graph. Using the Python package NetworkX, we
generate a random VG-node δg-regular graph G and another
random VH -node δh-regular graph K. We select VG vertices
from the graph K randomly, called the core vertices set.

When we generate an induced subgraph isomorphism prob-
lem instance, we reshape the graph K to a δh-regular graph
by exchanging edges such that an induced subgraph of the
new graph and the core vertices set is isomorphic to G. We
can regard the new δh-regular graph as a host graph H in
the instance of the problem. As a result, there is a vertex set
such that an induced subgraph of H and the vertex set is
isomorphic to the guest graph. The optimal solution for the
problem instance is “Yes”.

On the other hand, when we generate a subgraph isomor-
phism problem instance, we reshape the graph K to a δh-
regular graph by exchanging edges such that a subgraph of the
core vertices set is isomorphic to G. The subgraph is defined

by the core vertices set and an edge set, in which endvertices
are included in the core vertices set. We can regard the new δh-
regular graph as a host graph H in the instance of the problem.
As a result, a guest graph is isomorphic to the subgraph of a
host graph. The optimal solution for the problem instance is
“Yes”. Hence, the optimal solution of QUBO for the instance
is equal to the optimal energy.

For our experiment, we generate 8-instances with VG =
8, 64 and VG × VH = 8192. Hence, VH = 1024, 128 holds.
We also set δg = 3

8VG and δh = 3
8VH , 5

8VH .
Table VI shows the number of non-zero entries in QUBO

matrices defined by our four QUBO formulations of the
induced subgraph isomorphism problem. Table VI also shows
average solutions obtained by Amplify AE and OpenJij.
Because Gurobi runs once per instance, Table VI shows
one solution per instance for Gurobi. In addition, Table VI
shows the number of optimal solutions, obtained by Amplify
AE or OpenJij, which are represented as the number in the
parenthesis. We note that a host graph H contains EH edges,
and let AH = 1

2VH(VH−1). As we can see from Remark 2, if
a host graph H is a 1024-node 384-regular graph or a 128-node
48-regular graph, then EH < AH

2 holds and the number of
non-zero entries in the QUBO matrix of QUBO Formulation C
is the smallest. If H is a 1024-node 640-regular graph or a
128-node 80-regular graph, then EH > AH

2 holds and the
number of non-zero entries in the QUBO matrix of QUBO
Formulation D is the smallest. Table VI shows that Remark 2
is satisfied.

From Table VI, Amplify AE can find the optimum energy
within 100 seconds when the number of non-zero entries
in the QUBO matrix is the smallest among four QUBO
formulations. Regardless of the number of non-zero entries
in the QUBO matrix Gurobi can find the optimum energy
within 100 seconds when a guest graph G of instances is an
8-node 3-regular graph. However, Gurobi and OpenJij cannot
find them when a guest graph G of instances is an 64-node
24-regular graph.

Table VII shows the number of non-zero entries in QUBO
matrices defined by our two QUBO formulations of the sub-
graph isomorphism problem. Table VII also shows average so-
lutions obtained by Amplify AE and OpenJij. Because Gurobi
runs once per instance, Table VII shows one solution per

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 51 –

TABLE VI
THE NUMBER OF NON-ZERO ENTRIES IN W⟨i,j⟩,⟨k,l⟩ AND SOLUTIONS OF QUBO INSTANCES FROM INDUCED SUBGRAPH ISOMORPHISM PROBLEM

INSTANCES, OBTAINED BY QUBO SOLVERS.

Instance A guest graph G is an 8-node 3-regular graph
A host graph H is a 1024-node 384-regular graph A Host graph H is a 1024-node 640-regular graph

of non-zero QUBO Form. A QUBO Form. B QUBO Form. C QUBO Form. D QUBO Form. A QUBO Form. B QUBO Form. C QUBO Form. D
entries 19,415,040 18,370,560 15,237,120 22,548,480 18,366,464 19,419,136 22,577,152 15,208,448

energy energy energy energy energy energy energy energy
Optimum −28 0 −12 −16 −28 0 −12 −16

Gurobi −28 0 −12 −16 −28 0 −12 −16
Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Amplify AE −28 (10) 0 (10) −12 (10) −16 (10) −28 (10) 0 (10) −12 (10) −16 (10)
OpenJij −18.2 (0) 0 (10) −7.9 (0) −10.7 (0) −17.4 (0) 0 (10) −8 (0) −9.8 (0)

Instance A guest graph G is a 64-node 24-regular graph
A host graph H is a 128-node 48-regular graph A host graph H is a 128-node 80-regular graph

of non-zero QUBO Form. A QUBO Form. B QUBO Form. C QUBO Form. D QUBO Form. A QUBO Form. B QUBO Form. C QUBO Form. D
entries 18,124,800 16,220,160 13,172,736 21,172,224 16,158,720 18,186,240 21,430,272 12,914,688

energy energy energy energy energy energy energy energy
Optimum −2016 0 −768 −1248 −2016 0 −768 −1248

Gurobi −1537 48 −296 −767 −1474 48 −247 −716
Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Amplify AE −1419.3 (0) 0 (10) −768 (10) −966.3 (4) −1646.3 (4) 0 (10) −768 (10) −1248 (10)
OpenJij −1088.2 (0) 47.3 (0) −193.8 (0) −423.4 (0) −977.6 (0) 48.8 (0) −177.3 (0) −352.4 (0)

TABLE VII
THE NUMBER OF NON-ZERO ENTRIES IN W⟨i,j⟩,⟨k,l⟩ AND SOLUTIONS OF QUBO INSTANCES FROM SUBGRAPH ISOMORPHISM PROBLEM INSTANCES,

OBTAINED BY QUBO SOLVERS.

Instance G: an 8-node 3-regular graph G: a 64-node 24-regular graph
H: a 1024-node 384-regular graphH: a 1024-node 640-regular graphH: a 128-node 48-regular graph H: a 128-node 80-regular graph

of non-zero QUBO Form. A QUBO Form. B QUBO Form. A QUBO Form. B QUBO Form. A QUBO Form. B QUBO Form. A QUBO Form. B
entries 8,945,664 12,079,104 12,091,392 8,933,376 5,505,024 8,552,448 8,650,752 5,406,720

energy energy energy energy energy energy energy energy
Optimum −12 0 −12 0 −768 0 −768 0

Gurobi −12 0 −12 0 −587 36 −708 21
Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Ave.
energy

of
Opt.

Amplify AE −12 (10) 0 (10) −12 (10) 0 (10) −596.2 (0) 9.5 (7) −684.8 (0) 16.9 (0)
OpenJij −7.4 (0) 0 (10) −10.6 (2) 0 (10) −331.2 (0) 37.2 (0) −499.6 (0) 22.4 (0)

instance for Gurobi. In addition, Table VII shows the number
of optimal solutions, obtained by Amplify AE or OpenJij,
which are represented as the number in the parenthesis. As
we can see from Remark 3, if a host graph H is a 1024-
node 384-regular graph or a 128-node 48-regular graph, then
EH < AH

2 holds and the number of non-zero entries in the
QUBO matrix of QUBO Formulation A is smaller than that of
QUBO Formulation B. If H is a 1024-node 640-regular graph
or a 128-node 80-regular graph, then EH > AH

2 holds and the
number of non-zero entries in the QUBO matrix of QUBO
Formulation B is smaller than that of QUBO Formulation A.
Table VII shows this fact.

From Tables VII, when a guest graph G is an 8-node 3-
regular graph, Gurobi and Amplify AE can find the optimal
solutions within 100 seconds even if the number of non-
zero entries in the QUBO matrix is large. Though OpenJij
cannot find the optimal solutions of two QUBO instances
generated by QUBO Formulation A, OpenJij can find them
of two QUBO instances of QUBO Formulation B. When a
guest graph G is a 64-node 24-regular graph, no QUBO solver

can find the optimal solutions within 100 seconds even if the
number of non-zero entries in the QUBO matrix is small.

VI. CONCLUSION

We have proposed various QUBO formulations for solving
the graph isomorphism problem, the induced subgraph isomor-
phism problem, and the subgraph isomorphism problem. We
have shown the experiment results using three QUBO solvers:
Gurobi optimizer, Fixstars Amplify AE, and OpenJij with SA.
Solving QUBO problems defined by our QUBO formulations,
we can solve the graph isomorphism problem, and the related
problems. Experiment results show that we can define various
QUBO formulations by giving rewards and penalties to archive
constraints.

REFERENCES

[1] F. Glover and G. Kochenberger, “A tutorial on formulating QUBO
models,” CoRR, 2018.

[2] R. Yasudo, K. Nakano, Y. Ito, Y. Kawamata, R. Katsuki, S. Ozaki,
T. Yazane, and K. Hamano, “Graph-theoretic formulation of QUBO for
scalable local search on GPUs,” in Proc. of International Parallel and
Distributed Processing Systems Workshops, 2022, pp. 425–434.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 52 –

[3] J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem:
Its Structural Complexity. Birkhäuser, 1993.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide
to the Theory of NP-Completeness. San Francisco: Freeman, 1979.

[5] C. S. Calude, M. J. Dinneen, and R. Hua, “QUBO formulations for
the graph isomorphism problem and related problems,” Theoretical
Computer Science, vol. 701, pp. 54–69, November 2017.

[6] R. Hua and M. J. Dinneen, “Improved QUBO formulation of the graph
isomorphism problem,” SN Computer Science, vol. 1, January 2020.

[7] N. Yoshimura, M. Tawada, S. Tanaka, J. Arai, S. Yagi, H. Uchiyama,
and N. Togawa, “Mapping induced subgraph isomorphism problems to
ising models and its evaluations by an ising machine,” IEICE Trans. Inf.
& Syst., pp. 481–489, 2021.

[8] D. Ratke, “List of qubo formulations.” [Online]. Available:
https://blog.xa0.de/post/List-of-QUBO-formulations/

[9] Gurobi optimization. [Online]. Available: https://www.gurobi.com/
[10] F. A. Corporation. Effective cloud platform for quantum annealing.

[Online]. Available: https://amplify.fixstars.com/en/
[11] Openjij: Framework for the ising model and qubo. [Online]. Available:

https://www.openjij.org/
[12] A. Martelli, Python in a Nutshell. O’Reilly Media Inc, 2003.
[13] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network

structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11–15.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 46–53, January 2024

– 53 –

