Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140

Volume 4, Number 1, pages 1-8, January 2015

FPGA 1mplementation of Ciphers using Schematic
to Program Translator(SPT)

Masashi Watanabe, Keisuke Iwai, Hidema Tanaka, and Takakazu Kurokawa
National Defense Academy of Japan
Kanagawa, Japan
Email:{em52037,iwai,hidema,kuro} @nda.ac.jp

Abstract—With the spread of heterogeneous computing, ac-
celerators such as GPU are widely used. However, it is not
easy to develop a software program that runs at high speed
on accelerators. On the other hand, encryption algorithms are
evaluated with not only the strength but also the implementability
and the performance. Therefore it is important to compare their
performance by throughput using accelerators. We proposed a
development tool named SPT(Schematic to Program Translator)
for high-speed processing of encryption as well as GPU and
FPGA. In this paper, we discussed FPGA implementation of
cipher using SPT. In this tool, a C program is automatically
generated from figures drawn in accordance with the specifica-
tions of the encryption algorithm. These programs are adjusted
for the C compiler, CUDA translator and high-level synthesis tool.
Moreover, many-core processors, GPU and FPGA can be easily
used by passing these programs to the C compiler, CUDA trans-
lator and high-level synthesis tool. As a result, circuits generated
by high-level synthesis tool(VivadoHLS provided by Xilinx) using
C programs generated by SPT can perform encryption process
correctly on FPGA, and their performance became faster than
manually generated codes.

Keywords—GUI, Implementation of Encryption Circuit, High-
Level Synthesis, FPGA, SoC, AES, Camellia

I. INTRODUCTION

The study on high speed calculation with good energy
efficiency is performed by various approaches. A many-core
processor represented by GPGPU which used GPU for general-
purpose processing [1] [2][3][4], the distributed processing us-
ing general-purpose processors and reconfigurable computing
using FPGA are paid attention. The spread of heterogeneous
computing that has more than two kinds of processers are
equipped by many commercially available devices such as
computer or smartphone. Programs or circuits are implemented
for GPU using CUDA or OpenCL etc and for FPGA using
VerilogHDL, VHDL or High-Level Synthesis etc. However, it
is not easy to develop a software program that runs at high
speed on accelerators such as GPU or FPGA etc using these
languages or tools.

On the other hand, encryption algorithms are evaluated
with not only the strength but also the implementability and
the performance[5]. Therefore it is important to compare their
performance by throughput using accelerators. Accordingly,
encryption algorithms developers have to take account of
performance comparison using the latest accelerators.

Although reconfigurable computing achieves high power
efficiency, the design of a circuit on FPGA takes time and

o1-

effort than software. As a mean to solve these problems, high-
level synthesis is paid attention. Although it is mainstream
to describe the design of a circuit to implement on FPGA
using hardware description languages (HDL) such as VHDL
or Verilog HDL in register-transfer-level (RTL), high-level
synthesis tool provides easier design environment than HDLs
and various automatic optimization.

Thereby we proposed a development tool named
SPT(Schematic to Program Translator) to make it easy to use
high-speed processing of encryption as well as FPGA and
many-core processor. In this tool, a C program is automatically
generated from figures drawn in accordance with the specifi-
cation of the encryption algorithm. In addition, these programs
are implemented on CPU as well as GPU and evaluated
[6][7]. In this paper, we will discuss FPGA implementation
of cipher using SPT. We also show our implementation results
of two kinds of encryption circuits (AES[8] and Camellia[9])
on FPGA using Vivado HLS which is a high-level synthesis
tool provided by Xilinx, and compare them on the standpoint
of speed, area and speed per area.

The remainder of this paper is organized as follows. In the
next section, we indicate conventional problems of implemen-
tation of symmetric block cipher on accelerators and brief ex-
planation of SPT. In section III, IV and V, constitution, design
and implementation of SPT are shown. Code generation for
high-level synthesis tool(Vivado HLS) by SPT, its evaluation
results are explained in section VI. Finally, we explain our
conclusion in section VII.

II. IMPLEMENTATION OF SYMMETRIC BLOCK CIPHER ON
ACCELERATORS

A. Conventional implementation methods

The symmetric block ciphers can be realize by software
implementation as well as hardware implementation. In soft-
ware implementation, programming languages and parallel
processing libraries are used. Similarly, the schematic drawing,
hardware description languages(HDL) and high-level synthe-
sis(HLS) etc are used for hardware implementation.

B. Conventional problems of implementation

For software implementation, programming languages such
as the C language are used for CPUs. CUDA and OpenCL
which are extended from these languages are used for
GPUs. For hardware implementation, hardware description
languages(HDL) or high-level synthesis tools such as SystemC

are used for FPGA. Both implementation require enough
knowledge and skills to describe programs adequate to each
accelerator. It is not easy to describe programs with high
performance. Moreover when we have to implement the same
algorithm to a different device, it is necessary to renew
programs. However, this renewal requires enough knowledge
and skills with a waste of time and labor. Similarly they are
not easy.

The study on software as well as hardware implementation
of symmetric block ciphers using prepared template of known
algorithms with GUI interface is performed in [10]. On the
other hand, we proposed SPT in [6] which has high flexibility
by drawing figures which accord with algorithms of symmetric
block ciphers, and it can be applied to other fields than
block ciphers and versatile availability by combining with a
translator.

Drawing figures that had higher level of abstraction than
programming descriptions such as C language are used for
input of SPT. Because HLS makes it possible to implement
circuits form the description that had high level of abstraction
such as the C language to hardware.

C. Flow of the SPT processing

Figure 1 shows summary of SPT. The input of SPT is
figures, while the output of SPT are the codes which can
be adapted for C compiler, CUDA translator and high-level
synthesis tool. Programs or circuits are implemented to CPU,
GPU or FPGA. Figure 2 shows an example of drawing figures
for input to SPT. A program to perform y = a+b@0xfff [is
generated when this figure is input into SPT. In this figure, the
quadrangular element (node) expresses arguments of functions,
constant number or kinds of the processing and the arrow (arc)
express data flow.

«input»
name="a"

«inputy
name="a"

‘ Figuer of encryption algorithm

bit_length="16" bit_length="16"
V V
S

/L\> V «const»

C Compiler CUDA | High-Level vaIuE="0xﬂEf'
2 OpenCL || Synthesis bit_length="16

b
Fig. 1. Summary of SPT

Fig. 2.

ures

Example of drawing fig-

III. CONSTITUTION OF SPT

Figure 3 shows constitution of SPT. It consists of four parts
listed as follows:

1) Figure input part

(@) Figure analysis part
3 Data flow analysis part
4 Code generate part

Three intermediate representation(IR) are used between these
parts as follows:

(1) UXF(UML Exchange Format)
2 SML(Schematic Markup Language)
3) DML (Dataflow Markup Language)

SPT

Figure Input

l Export UXF
Schematic Analyzer

1/ Export SML
Data Flow Analyzer

Export DML
v

Code Generator
R
—

TTITCTacoT

Export Code

Fig. 3. Constitution of SPT

IV. DESIGN OF SPT

Three packages are shown in Fig.4. UMLet[11] and these
packages are main components of SPT. UMLet is a front-end
of SPT and corresponds to the figure input part. UXFtoSML
package corresponds to the figure analysis part. SMLtoDML
package corresponds to the data flow analysis part. CodeGen-
erator package corresponds to the code generate part. Each
package has element package and interpreter package, which
are class groups to express elements to output and to parse IR.

UXFtoSML
Element
Interpreter

SMLtoDML
Element
Interpreter

CodeGenerator
Element

Interpreter

Fig. 4. Three packages constituting SPT

A. UXFtoSML package

In SPT, a quadrangle is treated as a node which expresses
a kind of the processing, and an arrow is treated as an arc
which expresses the data flow. However, UXF has only form
and position of elements because it is a format to express a

figure of UML. Therefore the kind of processing is decided
by a keyword and parameters described in a quadrangle. This
package analyzes the form, the keyword and parameters of
element. Moreover a quadrangle is converted into a node that
expresses a kind of processing. Similarly an allow is converted
into an arc that expresses the data flow. These conversance
results became output of schematic analyzer in the form of
SML.

B. SMLtoDML package

In this package, relations of the node and the arc are
converted into a task graph from the positional information
of each element in SML. This task graph is a directed acyclic
graph(DAG), and topological sort is applicable to this graph.
For this reason, scheduling is carried out using topological sort,
and the set of an order taking a sequential step is generated
as output in the form of DML.

C. CodeGenerator package

The code of C program for C compiler, CUDA translator
and high-level synthesis tool is generated in this package. SPT
has already been able to generate the code for C compiler and
CUDA translator [6][7]. In this study, we added another ability
to SPT to be able to generate the code for high-level synthesis
tool.

V. IMPLEMENTATION OF SPT

SPT was developed by Java. Because we selected an object-
oriented language which is suitable for making the code easier
to change or to add a new feature as the programming language
to implement SPT. Additionally, Java can be used without
depending on the OS.

A. Operating method

The operating method of UMLet which is the front-end of
SPT is shown in this section. Figure 5 shows input screen of
UMLet. In this screen, the part surrounded in a red frame is
named a diagram panel, the part surrounded in a blue frame is
named a palette panel and the part surrounded in a green frame
is named a property panel. Elements in palette panel are copied
in diagram panel by double clicking or drag-and-dropping. The
parameter of each element can be edited in property panel.
The figure in conformity with specifications of block cipher is
completed by connecting each element with arrows.

B. Drawing figures

Figures 6-9 show the specification figures and the drawn
figures as examples to implement Camellia. The left side of
each figure shows a specifications figure, while the right side
shows a figure drawn using UMLet. Camellia’s encryption
function, F function, FL function, and FL~! function are
shown in Fig.6, Fig.7,Fig.8 and Fig.9 respectively.

Palette Panel

T
Diagram Panel } Property Panel

Fig. 5. Input screen of UMLet

VI. CODE GENERATION FOR HIGH-LEVEL SYNTHESIS
TOOL(VIVADOHLYS)

Various features such as optimization of array, loop un-
rolling and function inlining are available using directives in
high-level synthesis tool(VivadoHLS). The arrarys including
substitution tables or extended keys can be accessed faster by
optimization using directives or preparation of copies. This
fact was confirmed in out previous study[12]. In consideration
of these findings, the code for high-level synthesis tool is
generated in SPT as follows.

A. Declaration of the variable

The arbitrary precision integer data types are available in C
program for VivadoHLS. Therefore all variables are declared
using the arbitrary precision integer data types in the code
which is generated by SPT. For example, a declaration
uintlé n
accords with a variable called n with 16 bits length.

B. Parallel access to array

Arrays in which extended keys or substitution tables are
stored are implemented on registers or distributed RAM. As a
result, they can be accessed in parallel. The details are shown
below.

1) Parallel access to extended keys: Extend keys are
implemented on registers by using directives because they are
not so large size such as 10 keys which have 128-bit length
in AES and 22 keys which have 128-bit length in Camellia.
For an example, a directive described by
#fpragma HLS ARRAY_PARTITION variable=exkey
complete dim=1.
means that an extended key called as “exkey” is stored at a
register.

2) Parallel access to substitution tables: Copies of
substitution tables are prepared and are implemented on
distributed RAM because their sizes are large. Therefor, (The
number of times that is accessed / 2) substitution tables are

«inputy
name="plaintext”

«inputy
name="exkey"

bit_length="128" bit_length="64"
amay="true"
«splits
-“[/I’s num="2" - 2
29) data1:begin="0" end="63",
l 64" and="127"
«tablecally A ‘L
kw, ., —@ De— kw, name="exkey’ | «XOR» «XOR»
1049) 2(64) 2
index="0" [name="exkey"
index="1"
Loy Rosy | I
k10600 Kos. ;. |_«functioncalls |
K169, k269), k3009, L Rz T name="F"
p Py (B) name="exkey’
Kyse. Fse, Kooy oE 1(64) indox="2"
B3 - o
o
L1049 = (64) «functioncally
ko Loy — = Ry
2(04) F «tablecall» Mame=F" |
A name="exkey" i
. pam=ssoy
2. ~ » index="
Kisg Kl L
Lisvsgh e e iR
3 A . ko 2(04) 2(04)
Kr69. Ksioe), Koo, 3(64) “fncioncas
Erowa, iirsa Eae . ¢ «tablecally name="F"
10(04).,), M12(64) O—E!v. i — - name="exkey"
; ; & L4 T — Rseq) Ll
Y 4(64)
P «functioncally
- s «tablecall» name="F"
K3 Huoy § o Lusy — — Rusy name="oxkey”
\ 5(64) index="5"
k1369, k1469, k15064, B -
k . k " k) -\’: _,:-—— «functioncall»
16(64), K17(64), X 18(64) o . Lsy — — Rsey aablecalls name="F"
l X 0(04) name="exkey"
> & index="6"
\f/— e
— «functioncall»
Lisiy Ryss9) r/ j «tablecall» name="F"
name="exkey"
I [indox="T
kw, ., — —hw, .
3(04) 4(64)
«tablecally Y «tablecally
R
name="exkey" M name="exkey"
index="8" ame index="9"
C

128)

Fig. 6. Example of drawing figure(Camellia’s encryption function)

generated in code generator of SPT by using dual port RAMs
which can be accessed doubly at the same time. These tables
are implemented on the distributed RAM by a directive as
follows:

#pragma HLS RESOURCE variable=spl_0
core=RAM_2P_18S.

C. Evaluation

We draw figures of AES and Camellia, and input them
into SPT. The code generated from these figures by SPT is
implemented on FPGA. Figure 10 shows a part of Camellia’s
code generated by SPT for VivadoHLS. The precise circuits
were synthesized by VivadoHLS from these codes, and these
circuits were confirmed to encrypt exactly. These circuits are
evaluated by throughput, area and throughput par area. The
evaluation environment is summarized in the Table I.

TABLE 1. EVALUATION ENVIRONMENT
OS ‘Windows 7 Professional
CPU Intel Core 17-920 3.4GHz
Memory 16GB
High-Level Synthesis Tool | VivadoHLS
FPGA ZYNQ(xc7z020clg484-1)

D. FPGA implementation results

Table II shows FPGA implementation results. AES become
about three times faster than Camellia in throughput. However,
the circuit area of AES become larger than Camellia. As
a result, performance of AES becmae almost the same as
Camellia in Throughput par Area.

TABLE II. FPGA IMPLEMENTATION RESULTS
Algorithm | Throughput Area Throughput/Area
[Mbps] [slices] [Kbps/ slices]
AES 1789.1 9158 200.0
Camellia 670.0 3403 201.6

E. Comparison with handmade

Table IIT shows FPGA implementation results of AES pre-
sented in our previous study [12]. Each type of implementation
is shown as follows:

Typel A substitution table (S-box) is implemented as a
look-up table.
Type2 Sixteen S-boxes are implemented as a look-up

table.

ki (64)
X3 _ (P 5158 M M
U L 7 (V7A
X9 _ (7 5147 M M
N7 e N N
X _ (P 5156 M AL 4
Vg e] v YT\ [
X568 ,G;"s P 1D M (Y — 2
Do | LAY T
a1 \ z
g) U Y, / —
X3 _,:};."s =2 | | A :
\ 3 \J U/
X0 _ (2 [22 N
(N7 Iy]y V7 U
X160 _f, Y1 1AL T
(N7 B | I N

Fig. 7. Example of drawing figure(Camellia’s F function)

Type3 S-box is implemented by calculation using inverse
element in a Galois field and an affine transfor-
mation.

Type4 A substitution table (T-box) which combines a

calculation result of MixColumns and S-box is
implemented.

In addition, we described a code named TypeS extended
from Typed, which applied loop unrolling. This type became
as fast as TypeSPT.

TABLE III. FPGA IMPLEMENTATION RESULTS OF AES.
Type Throughput Area Throughput/Area
[Mbps] [slices] [Kbps/ slices]

Typel 96.7 455 217.6
Type2 448.1 403 1138.6
Type3 37.1 563 66.3
Type4 1393.5 646 2208.9

[TypeS [1789.1 [4576 [400.4]

[TypeSPT [1789.1 [9158 [200.0]

The last row named as “TypeSPT” uses codes generated
by SPT. The circuit generated by SPT using TypeSPT became
faster than other former results.

Performance of circuits depended on the implementation
types. However, implementation results show that the speed

-5-

name="input”

name="key"
bit_length="64"

num="g"

data3:begin="16" end="23" dala4:begin="24" end="31",
data5:begin="32" end="39" datab:begin="40" end="47",

dala:bagin="48" end="55" 47 ="56" ond="63" $ ‘}7
[ctablecats | [_ataviocan | [_ctavtecain | [tablecals__|
iats 4 Coamgar e e
[ctablecans | [ctalecans | [atablecam» | [tablecat»]
[rame=s2r | name='sa” | [name=—ga | name=s1" |
.xon»ch
3
, l «XOR»]I<.,
2 3
<80 | XOR» |g
7
’ «XOR» &
=78 L Y
o .xomﬁ
7 v
<68 >J| «XOR» I
o «XOR» |

) il I v
56 E’ o I;XDL]

«XOR»

|
o 1

'
[
L=]

«concatenaten

¥

«outputy
name="outpul”
bit_length="64"

of the circuits which were high-level synthesized using codes
described by hands depended on the ability of the person who
describes the circuit. For this reason, enough speed may not
be provided in the circuit which was high-level synthesized
from the code that was described by hands, and the circuit
generated by SPT could not reached very high-performance at
all, but can achieve stable high-speed.

As a result, the code that was generated by SPT achieved
the speed that was as fast as, or faster than the codes described
by hands. This is attributed to static single assignment(SSA).
Because SPT uses SSA form to generate codes, the circuit gen-
erated by SPT runs fast because of the high-level synthesis tool
which uses registers effectively. However, its area increased.
Thereby, TypeS became 2 times faster than TypeSPT in cases
of AES(Throughput/Area).

VII. CONCLUSION

Two kinds of encryption circuit were implemented on
FPGA using SPT that is the development tool to make it easy
to use high-speed encryption processing.

Codes of AES and Camellia for high-level synthesis tool
are generated by SPT. These circuits are synthesized by
VivadoHLS which is a high-level synthesis tool provided by
Xilinx from these codes. We compared their throughputs and

«inputy

name="input"
bit_length="64"
«splity
num="2"
data1:begin="0" end="31",
data2:begin="32" end="63"
X’ «inputy
< 7 ="key"
(64) bit lengthesa”
«splity
X-L 32 \—R 32 num="§" 0 31
< ¥ - 3 data1:begin="0" end="31",
(32) (32) daIaZ:b:inf’SZ"end 63" S
R value="0xffffffff"
/\'] ’*"‘L“;S(h'..';:..m” bit_length="32"
o it=
l iL(32)
«AND» « «XOR»
7q<<< 1 —D 5 bit_length="32"
ki ; > [eshiftetts |
iR(32) bit="1"
Vg
G —
A
«XOR» «OR»
Y725 Y
L(32) R(32) y
«concatenate»
Y54) !
«outputy
name="output"
bit_length="64"
Fig. 8. Example of drawing figure(Camellia’s FL function)
evaluated these circuit. As a result, the code that was generated [2] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright, “Fast

by SPT achieved the speed that was as fast as, or faster than
the codes that were described by hands. It can be thought that
the circuit run fast because of the use of SSA. However, its
area increased.

Finally, SPT is the development tool from figures which
ware drawn in conformity with specifications of block ciphers.
SPT can generate codes for CPU, GPU and HLS. The purpose
of our study is to give high performance for software imple-
mentation using many core processor, SIMD and hardware
implementation using HLS. Therefore, we will further improve
the quality of SPT.

ACKNOWLEDGMENT

This work was supported by Japan Society for the Pro-
motion of Science (JSPS) Grant-in-Aid for Scientific Re-
search (KAKENHI) Grant Number 25871223. (Grant-in-Aid
for Young Scientists B)

REFERENCES
[1] N. Nishikawa, K. Iwai, and T. Kurokawa, “High-performance
symmetric block ciphers on cuda,” in Proceedings of the 2011 Second
International Conference on Networking and Computing, ser. ICNC
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
221-227. [Online]. Available: http://dx.doi.org/10.1109/ICNC.2011.40

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

-6-

software aes encryption,” in Proceedings of the 17th international
conference on Fast software encryption, ser. FSE’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 75-93. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1876089.1876096

K. Iwai, T. Kurokawa, and N. Nishikawa, “Aes encryption
implementation on cuda gpu and its analysis” in ICNC.
IEEE Computer Society, 2010, pp. 209-214. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ic-nc/ic-nc2010.html

#IwaiKN10

S. Manavski, “Cuda compatible gpu as an efficient hardware accelerator
for aes cryptography,” in Signal Processing and Communications, 2007.
ICSPC 2007. IEEE International Conference on, Nov 2007, pp. 65-68.

National Institute of Information
Technology(NICT), Information-technology
Japan(IPA), CRYPTREC Report 2012, 2013.
http://www.cryptrec.go.jp/report/c12_sch_web.pdf
M. WATANABE, K. IWAL H. TANAKA, and T. KUROKAWA, “De-

velopment of cipher implementation tool using gui in japanese,” pp.
125-129, july 2014.

, “Gpu implementation of ciphers using schematic to program
translator(spt) in japanese,” pp. 35—42, oct 2014.

National Institute of Standerd and Technology(NIST), FIPS-197 Ad-
vanced Encryption Standard(AES), 2001.

Nippon Telegraph and Telephone Corporation, Mitsubishi Electric Cor-
poration, Specification of Camellia - a 128-bit Block Cipher, 2001.

A. Khalid, M. Hassan, A. Chattopadhyay, and G. Paul, “Rapid-feinspn:
A rapid prototyping framework for feistel and spn-based block ciphers.”
in ICISS, ser. Lecture Notes in Computer Science, A. Bagchi and I. Ray,
Eds., vol. 8303. Springer, 2013, pp. 169-190. [Online]. Available:
http://dblp.uni-trier.de/db/conf/iciss/iciss2013.html#KhalidHCP13

GNU, “Umlet 12.2,” http://www.umlet.com/, 2013.

and Communications
Promotion Agency
[Online]. Available:

(64)

YL(32) v YR(32)

— Kl i r3)

o
'Y

I Kl ;132
AL =D

X132 Xra32)

X 64)

Fig. 9. Example of drawing figure(Camellia’s FL~! function)

«input»

name="input"

bit_length="64"

;

«splity

num="2"

data1:begin="0" end="31",
data2:begin="32" end="63"

«inputy
name="key"
bit_length="64"

«splity

data1:begin="0" end="31",
data2:begin="32" end="63"

«consty
N $ value="0xffffffff"
<XOR» «R» | Lbit length="32"
a
«shiftright» .
g bit="31" =ﬁ Ll o SAORY:
B —B>{ bit_length="32"
«AND» P
B
«shiftefty
bit="1" =
A A
«concatenate»
«outputy
name="output"
bit_length="64"

[12] M. WATANABE, K. IWAL H. TANAKA, and T. KUROKAWA, “High-
speed implementation of encryption circuit using a high-level synthesis

tool,” pp. 63-66, Feb 2013.

#include "camellia_test.h"
uint128 camellia(uint128 plaintext, uint64 exkey[26]){
#pragma HLS ARRAY_PARTITION variable=exkey complete dim=1
#pragma HLS RESOURCE variable=plaintext core=AXI4LiteS metadata="-bus_bundle io"
#pragma HLS RESOURCE variable=return core=AXI4LiteS metadata="-bus_bundle io"
uint64 spl_0[256]={""};
uint64 sp7_8[256]={--+};
#pragma HLS RESOURCE variable=sp7_8 core=RAM_2P_1S
var_0_0 = exkey[0];
var_0_70 = exkey[25];
var_0_1 = (plaintext >> 64) & Oxffffffffffffffff;
var_0_3 = plaintext & Oxffffffffffffffff;
var_0_4 =var_0_0"var_0_1;
var_0_6=var_0_3 Avar_0_2;
F_F_var_1_19 =var_0_4"var_0_5;
F_F_var_1_1 =(F_F_var_1_19 >> 56) & Oxff;
F_F_var_1_2 =(F_F_var_1_19 >> 48) & 0xff;
F_F_var_1_3 =(F_F_var_1_19 >> 40) & Oxff;
F_F_var_1_4 = (F_F_var_1_19 >> 32) & Oxff;
F_F_var_1_5 = (F_F_var_1_19 >> 24) & Oxff;
F_F_var_1_6 =(F_F_var_1_19 >> 16) & Oxff;
F_F_var_1_7 =(F_F_var_1_19 >> 8) & Oxff;

F_F_var_1_8 =F_F_var_1_19 & Oxff;

F_F_var_1_9 =spl_8[F_F_var_1_1];

F_F_var_1_11 =sp2_8[F_F_var_1_2];

F_F_var_1_13 =sp3_8[F_F_var_1_3];

F_F_var_1_15=sp4_8[F_F_var_1_4];

F_F_var_1_16 = sp5_8[F_F_var_1_5];

F_F_var_1_10 =sp6_8[F_F_var_1_6];

F_F_var_1_12 = sp7_8[F_F_var_1_7];

F_F_var_1_14 = sp8_8[F_F_var_1_8];

F_F_output = ((((((F_F_var_1_9~F_F_var_1_11) AF_F_var_1_13) AF_F_var_1_15)
AF_F_var_1_16) AF_F_var_1_10) AF_F_var_1_12) AF_F_var_1_14;

var_0_63 = F_F_output;

var_0_67 = var_0_69 ~ var_0_65;

var_0_66 =var_0_63 " var_0_62;

var_0_68 = var_0_66 " var_0_70;

ciphertext = ((uint128)var_0_67 << 64) * var_0_68;

return ciphertext;

Fig. 10. A part of Camellia’s code generated by SPT

