Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140

Volume 4, Number 1, pages 9-14, January 2015

Implementations of Parallel Error Diffusion Optimized for GPUs
(Preliminary version)

Akihiko Kasagi, Koji Nakano, and Yasuaki Ito
Department of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashi-hiroshima, 739-8527 Japan

Abstract—Error diffusion is a well-known algorithm used for
converting a gray-scale image into a binary image. The main
contribution of this paper is to present our new error diffusion
algorithm optimized for CUDA-enabled GPUs. Our algorithm
partitions the gray-scale image into parallelogram blocks
and performs error diffusion operation for them in parallel.
We have implemented several error diffusion algorithms on
GeForce GTX 780 Ti. The experimental results show that our
algorithm runs faster than any other error diffusion algorithms
for any input matrices. Also, it runs 44 times faster than the
sequential error diffusion algorithm using a single CPU.

Keywords-error diffusion, GPU, CUDA

I. INTRODUCTION

Halftoning is an important task to convert a continu-
ous tone image into a binary image with pure black and
white pixels [1]. This task is necessary when printing a
monochrome or color image by a printer with limited
number of ink colors. Error diffusion [2] is a classical but
still popular method for generating a binary image that re-
produces an original gray-scale image. Ordered dithering [3]
is also a popular halftoning method, which is used for inkjet
and laser printers. It generates a binary image by applying
a threshold map to an original gray-scale image.

Latest GPUs are designed for general purpose computing
and can perform computation in applications traditionally
handled by the CPU. Hence, GPU has recently attracted the
attention of many application developers. NVIDIA provides
a parallel computing architecture called CUDA (Compute
Unified Device Architecture) [4], the computing engine for
NVIDIA GPUs.

CUDA-enabled GPUs have streaming multiprocessors
(SMs) each of which executes multiple threads in parallel.
CUDA can use two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [4].
Each SM has the shared memory, an extremely fast on-
chip memory with lower capacity, say, 16-48 KBytes, and
low latency. As illustrated in Figure 1, every SM shares
the global memory implemented as an off-chip DRAM with
large capacity, say, 1.5-6 GBytes, but its access latency is
very long. The efficient usage of the shared memory and the
global memory is a key for CUDA developers to accelerate
applications using GPUs. In particular, we need to consider

the coalescing of the global memory access and the bank
conflict of the shared memory access [4],[5],[6].

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to streaming
processors such that all threads in a block are executed by the
same streaming processor in parallel. All threads can access
the global memory. However, threads in a block can access
the shared memory of the streaming processor to which the
block is allocated. Since blocks are arranged to multiple
streaming processors, threads in different blocks cannot
share data in shared memories. In the execution, 32 threads
in a block are split into groups of thread called warps.
Each of these warps contains the same number of threads
and is executed independently. When a warp is selected for
execution, all threads execute the same instruction.

Streaming Streaming Streaming Streaming
multiprocessor multiprocessor — multiprocessor — multiprocessor
(o))))| |G))| |G) oo]
(Ceore J(Ceore J| [[Ceore J(Ccore)| | [Ceore J(Ceore)| |[Ceore][core
o)) |)| | Ge))| |G) oo]
(Ccore J(Cecore J| [[Ceore J(Ccore)| | [Ceore J(Ccore)| | Ccore][core

Shared Shared Shared Shared
memory memory memory memory
[[[[
[Global memory]
Figure 1. High-level GPU architecture

When threads in a warp access consecutive address in the
global memory, the address space of the global memory can
be accessed at the same time(coalesced access). However, if
threads in a warp access distant address space in the global
memory, these memory requests are divided into the several
times(stride access). Since the coalesced access maximizes
the bandwidth of memory access, we should avoid the stride
access and perform the coalesced access whenever possible.

In the GPU architecture. shared memory is separated into
32 banks. The successive words are assigned to successive
banks. If threads in a warp access distinct banks in the shared

memory, the access can be serviced simultaneously. On the
other hand, if threads access the same bank, the access
has to be serialized(bank conflict). So, we should access
distinct address and avoid the bank conflict to maximize
throughputs. In addition, CUDA supports barrier synchro-
nization and atomic operations such as atomicAdd. Since
barrier synchronization and atomic operations impose certain
overhead cost, these operations should be avoided when we
design parallel algorithms.

Error diffusion is a method for generating a binary image
that reproduces a gray-scale image. In error diffusion, pixel
values are rounded to binary in raster scan order and the
rounding error is distributed to neighboring four pixels that
have not yet been processed. Let a be a gray-scale image of
size y/n X y/n such that pixel a[i][j1(0 < i, < \/n—1) takes
an intensively level(i.e. a real number) in the range[0,1].
Error diffusion (ED) outputs a binary image b of the same
size such that each pixel b[i][j] takes a binary value (i.e. 0
or 1). Input image a is scanned in raster scan order and
error diffusion operation is performed one by one. Error

diffusion operation rounds the value of a[i][j] to 0 or 1 and
the resulting binary value is stored in b[¢][j]. Rounding error
e (= ali][§] — b[#][4]) is diffused to neighboring unprocessed

four pixels as illustrated in Figure 2. The details are spelled
out as follows:

[Error Diffusion(ED)]
i+ 0to+/n—14do
for j < 0to y/n—1do
if afi][j] < 1 then r + 0 else r + 1;
blil[j] 75 e« alil[j] —
ali][j + 1] « ald[j + 1] + 55 - &

[1]

ali][j +1] + ali +1][j —]+f”6 e
ali][j + 1] « ali +1][j] + 15 - &
ali][j + 1] [z+1]b+1]+1—6 ;

We assume that two temporary variables r and e are allo-
cated as registers in a processor. Variable r is used to store
the resulting binary value and variable e stores the rounding
error to be diffused. For simplicity, we assume that the values
of a[i][7] such that ¢ = —1, y/n or j = —1, \/n are zero to
avoid special treatment for boundary pixels.

In this paper, we show our new method, error collection,
which outputs exactly the same binary image as error
diffusion. Similarly to error diffusion, error collection scans
input image a in raster scan order, and for each pixel in
a, rounding errors are collected from neighboring processed
four pixels as illustrated in Figure 2. The details of error
collection are spelled out as follows:

[Error collection(EC)]

1< 0to/n—1do

for j < 0to y/n—1do
S alil] + f -alill -1+
+15 - ali = 1[j] + 55 - ali —

ali = 1][j — 1]
][J+1],

ifs<éthenre0dsere1;
ali][j] < s —r; B[i][j] < 7

Similarly, we assume that two temporary variables r and s
are allocated as registers. Variables r and s are used to store
the sum of rounding errors and the resulting binary value.
Since the value of each binary pixel b[¢][j] can be determined
by a constant number of instructions, both algorithms run
O(n) time for an input image with n pixels.

7 3 5 1
* o> 16 | 16 | 16
| T
I’
1 5 3 A R
16 16 16 16

Error diffusion Error collection

Figure 2. Error diffusion and error collection
1|23 [4]s 7
3456748
s| e J7hsM I Mol
748 Mo |1 |12] 13

1011 (12|13]|14]|15
1|12 |13(14]|15]|16|17
1314151617 |18 | 19 | waman
Figure 3. Parallel error diffusions

In [7][8], Metaxas parallelized error diffusion which
assigns each of processors to each row of an input image
and execute error diffusion operation from left to right as
illustrated in Figure 3. A variant of error diffusion called
pinwheel error diffusion [9] have been implemented in a
GPU [10]. The basic idea of pinwheel error diffusion to
partition an input gray-scale image into square blocks and
execute error diffusion operation for all blocks in parallel.
Since all blocks of images can be processed independently,
high parallelism can be obtained very easily. However,
rounding errors are trapped within each block, the result-
ing binary images have uncomfortable periodical artifacts
especially when the size of block is small. Their implemen-
tation achieves 475.5M pixels/s for 16Mpixel halftoning for
14 %14 blocks using GeForce GTX 460. Our implementation
follows the original error diffusion [2] that distributes errors
to whole pixels. Although the original error diffusion is hard
to parallelize.

The main contribution of this paper is to show the efficient
algorithms, block-wise error diffusion(BWED) and block-
wise error collection(BWEC), which partitions an input
image into the parallelogram blocks and performs the error

-10 -

diffusion/collection in block-wise. We have implemented
several algorithms on GeForce GTX 780 Ti. The experi-
mental results show that our BWEC runs faster than any
other error diffusion algorithms. We have also implemented
sequential algorithms on Intel Core-i7 3770K. The result
shows that our algorithm runs 44 times faster than the
sequential error diffusion algorithm using a single CPU.

II. PWED AND PWEC ALGORITHMS

The main purpose of this section is to show the pixel-
wise error diffusion algorithm (PWED algorithm) and pixel-
wise error collection algorithm (PWEC algorithm). PWED
algorithm assigns processors to each row and executes error
diffusion from left to right as illustrated in Figure 3. Given
a gray-scale image a of the size y/n X \/n, a binary image
b of the same size can be computed as follows:

[PWED algorithm]
for k < 0 to 3(y/n—1) do
for i < 0 to \/n — 1 do in parallel
j=k—2i
if 0 <j<.n—1then
DIFFUSE(i, §);
barrier_synchronization;

In this algorithm, DIFFUSE(7, j) denotes some com-
putation for ali][j] and b[i][j]. Let us see how PWED
algorithm works. First, when & = 0 a processor as-
signed to the first row performs DIFFUSE(0,0). After
that, this processor performs DIFFUSE(0,1), DIFFUSE(0,2),
..., DIFFUSE(0,,/n — 1) one by one. When k = 2, it
performs DIFFUSE(0,2), and a processor assigned to the
second row performs DIFFUSE(1,0). The same procedure
repeated until DIFFUSE(y/n — 1,y/n — 1) is performed
when k = 3(y/n — 1). Hence, PWED algorithm performs
barrier synchronization 3(y/n — 1) times. Since the the
size of input image a is y/n X +/n, pixels in at most
L‘/T;_lj -+ 1 consecutive rows are processed in parallel. In
PWED algorithm, we must use atomicAdd instruction to
guarantee that the resulting values of additions are collect
even if the two addition operations to the same pixel by
different calls of DIFFUSE(3, j) are executed at the same
time. Thus, the details of DIFFUSE(i, j) are spelled out as
follows:

DIFFUSE(i, 5)
if afi][j] < 3 then r < 0 else r < 1;
b[i)[j] 73 e < ald][j] — 7
alillj +1] < ali+1j+1] + & - &
alillj + 1] < ali +][] + = -
atomicAdd(al[i][j + 1], 5 - €);
atomicAdd(ali + 1][j — 1], <= - €); }
Even if DIFFUSE(i,j), DIFFUSE(i + 1,7 — 2) and

DIFFUSE(: — 1,5 + 2) are executed at the same time,
additions to a[i + 1][j — 1] and a[i][j + 1] are performed

correctly. Clearly, each pixel is performed 5 read operations
and 5 write operations. For exemple, when DIFFUSE(i, j)
is executed, a processor reads a[i][j], ali][j + 1], a[i + 1][j —
1], ali +1][4] and a[i + 1][j + 1], and writes b[i][j], ali][;
1],ali + 1][j — 1], a[i + 1][j] and ali + 1][7 + 1]. However,
each memory access request is not consecutive address.
Thus, PWED algorithm performs 10n stride memory access
operations.

Similarly to PWED algorithm, PWEC algorithm assigns
processors to each row and executes error collection from
left to right. Given a gray-scale image a of the size \/n X
\/n, a binary image b of the same size can be computed as
follows:

[PWEC algorithm]
for k + 0 to 3(y/n—1) do
for i + 0 to v/n — 1 do in parallel
j=k—2i
if 0 <j <+/n—1 then
COLLECT(4,j);
barrier_synchronization;

In this algorithm, COLLECT(i, j) denotes some compu-
tation as follows:

COLLECT(3, 5)
{ s alillj] + 5 - alillj — 1] + 15 - ali = 1][j = 1]
1 - ali = 1] + 15 - ali — 1] +11;
ifs§%thenr<—06:lser<—1;
ali)[j] <= s — 7 B[i][5] =75 }

This algorithm performs barrier synchronization k£ =
3(y/n — 1) times in the same way as PWED algorithm
However, PWEC algorithm has two differences from PWED
algorithm. First, PWEC algorithm has no atomic operations.
Even if the two read operations to the same pixel by
different calls of COLLECT(3, j) are executed at the same
time, read operations to ali — 1]|[j] and a[i — 1][j + 1]
are performed correctly. Second, PWEC algorithm performs
fewer memory access operations than PWED algorithm. For
example, when COLLECT(i,j) is executed, a processor
reads ali][j],ali — 1)[j — 1], ali — 1][j], a[i — 1][j + 1] and
ali][j—1], and writes b[¢][j] and a[i][j]. So, PWEC algorithm
performs 5 read operations and 2 write operations per pixels.
However, each memory access request is not consecutive
address. Thus, PWED algorithm performs 7n stride memory
access operations.

III. OUR BWED AND BWEC ALGORITHMS

The main purpose of this section is to show our novel
algorithms: block-wise error diffusion algorithm (BWED
algorithm) and block-wise error collection algorithm (BWEC
algorithm) The idea is to separate an input image into several
parallelogram blocks and execute error diffusion/collection
in block-wise.

-11 -

A(0,1) A(0,2) A(0,3) A(0,4)

3 415(6(7 819 (10]11

11

13 1511617 1912021 22123

12

24125(2627 281293031 32(33(34]35

21 23

36|37 38[39[40]41 42143 |44 |45 46 | 47

24
36| 3

27
39

28
40

45

35

47

A(1,0)

A(1L,1) A(1,2) A(1,3) A(1,4)

48 52 57 59 48 149

50

51 525354155 57158159

60 63| 64 69 71

60

61 6263|6465 66| 67|68 |69 70171

v

72 75476 81 83

72173 |74 |75 7677|7879 8081|8283

84 87|88 93 95

84185 86| 87|88 |89 90191 93 94195

96 99 105 107

AQ2,0)

A(2,1) A2)2) A(2,3) A2,4)

108 111]112] 117 119

96 | 97

98

99 100{101{102 104[105[106

120 123]124 129

108

109 110{111)112 114]115]116 118]119)

132 135|136 141 143]

120|121 12411251126 128]129(130

132 134]135]136 138]139]140 142

Figure 4.

Read the round errors

|
}

Execute error diffusion

Assignment of an input image in our algorithm with w = 4

Write the round errors

[TITTTT]
At iy

[IIIII]

T11111111

Figure 5.

We use parameter w to denote the number of threads in a
warp and the number of memory banks in the shared mem-
ory of a streaming multiprocessor. Hence, we set w = 32
when we implement our parallel algorithm using CUDA for
experiment. Support that a is an input image of the size
/1 x y/n. In our algorithms, the input image a of the size
\V/n x y/n is partitioned into (% +2) x % blocks of the
size w x w each. Let A be CUDA blocks in this algorithm.
Then, each pixels a[é][j](0 < i,j < y/n — 1) is assigned a
block of A(y,z) (y = £, z = W) Figure 4 is
shown an example with w = 4 that an image of the size
12 x 12 is assigned 5 x 3 parallelogram blocks of the size
4 x 4.

In error diffusion and error collection, the pixel a[é][j]
depends on its neighboring processed pixels a[i — 1][7 — 1],
ali][j — 1], ali + 1][j — 1] and a[i — 1][j]. Therefore, in the
block-wise computation, block of A(y,z) depends on its
neighboring processed blocks of A(y—1,z+1), A(y—1,2+
2) and A(y,x — 1). Thus, the details of BWED algorithm
and BWEC algorithm are spelled out as follows:

cTTITTII]
HEEEEEEEE

Computation of BWED algorithm in the shared memory with w = 8

[BWED and BWEC algorithm]
forkeOtoélg—Q) do
for i < 0 to % — 1 do in parallel
if 3i <k < 3i+ Y2 41 then
block(i, k) executes COMP(i, k)

For a particular k, the number of values ¢ satisfying

vn

3i <t < 3+ ¥ 4+ 1isat most 5~ + 1. Hence,
Vn

approximately “éu'j_l CUDA blocks are used to executes

COMP(i, k). COMP(i,k) denotes some computation for
block(i, k). In the function of COMP(i, k), image a are
copied to the shared memory. We use a 2-dimensional array
of size (w+1) X (w+3) in the shared memory to store them.
When we execute error diffusion in the shared memory, as
illustrated in the Figure 5, first row in the parallelogram
block is necessary to collect errors. Also three pixels from
leftmost pixels of the parallelogram blocks are necessary.
They are copied to the 2-dimensional array in the shared
memory from array C and R with coalesced access. The
array C of the size v/n and the array R of the size 3 x /n are

-12 -

stored round errors which is written by the latest computed
blocks. For example, The element of C[j] (0 < j /n —1)
corresponds to the j-th column round error which is written
by the latest computed blocks. Similarly, The three element
of R[0][z], R[1][¢] and R[2][¢] (0 < i y/n — 1) correspond
to the i-th row round errors which are written by the latest
computed blocks.

Suppose that, BWED is executed for a parallelogram
block of gray-scale image a arranged on a 2-dimensional
array of size (w + 1) x (w + 3) in the shared memory. Let
d[ilj] (0 < i < w,0 < j < w+2) be an element of
the array. We can think that a'[7][j] is arranged in address
i-(w+3)+4, and thus, it is in memory bank (i- (w+3)+j)
mod w = (3i+;) mod w of the shared memory. It should be
clear that w threads in a warp access the same column of a’.
For example, they access a'[0][5], a'[1][]], ... ,a'[w — 1][4].
which are in memory banks (3 x 0+ j) mod w, (3 x 1+ j)
mod w, ... ,(3 X (w —1) + j) mod w. Since w and 3
are relatively prime, these w memory banks are distinct.
Hence, all memory access operations performed parallel
error diffusion are conflict-free.

Binary image b of the size \/n X y/n is also stored in the
shared memory. If b is arranged in the shared memory as
it is, writing operations of the same column by w threads
in a CUDA block caused bank conflict. We can avoid
bank conflict if we use padding technique [4] or diagonal
arrangement technique [11]. After that, we can copy the
resulting binary image of the size v/n X y/n in the global
memory. Also, as illustrated in Figure 6, we can copy the
round errors 4w to the array R and the array C.

Let us evaluate the number of memory access operations
to the global memory. Each block reads (w x w) + 4w
elements in the global memory. Also, Each block writes
(w x w)~+4w elements to the global memory. Since we have
(% +2) % % parallelogram blocks, access operations to the
global memory is performed 2- (% +2) x %) - (2w? 4 8w)
=2n+ O(7) times in BWED algorithm.

Similarly to BWED algorithm, we can implement BWEC
algorithm using parallelogram blocks.

A(y,x) A(y,x+1)

O r
O c

Figure 6. Copy the round errors to the array R and C

IV. EXPERIMENTAL RESULTS

This section shows experimental results for sequential
algorithm and parallel algorithms presented in this paper. We

use Intel Core-i7 3770K (3.5GHz) for evaluating sequential
algorithm and GeForce GTX 780Ti for evaluating parallel
algorithms.

[ED(CPU) algorithm]: This algorithm performs error dif-
fusion in a raster scan order. We use register cache technique
to reduce the number of memory access operations. In this
technique, we use five additional registers in a processor to
store the current values of a[i][7], a[é][j + 1], ali +1][j — 1],
ali+1][j] and a[i+1][j+1]. Hence, to perform error diffusion
operation for pixel a[é][j], the current values of a[i][j + 1]
and a[i+1][j+1] are copied to registers. After error diffusion
operation for pixel a[i][j] is completed, the result values of
ali + 1][j — 1] in a register are copied to a in the main
memory. For next error diffusion operation for a[é|[j + 1],
the values of registers are shifted by one from right to left.

[EC(CPU) algorithm]: This algorithm performs error
collection in a raster scan order. Similarly to ED(CPU), we
use five additional register to cache ali—1][j+1], a[i—1][J],
ali — 1][j — 1], a[é][4] and a[i — 1][4] for error collection.

We have used 8-bit “unsigned char” for input gray-scale
image a and output binary image b. Since most gray-scale
images have 8-bit depth, it makes sense to use 8-bit unsigned
integers. Also, we use 32-bit “unsigned int” to store inter-
mediate pixel values as fixed-point numbers. Also, barrier
synchronization of all threads in a CUDA is implemented
by invoking separated CUDA kernel calls. We have tested
several configuration in terms of the number of threads in a
CUDA blocks, and selected the best configuration. Table I
shows the running time of error diffusion algorithm for a
image of size from 1K x 1K (= 1024 x 1024) to 16K x
16K (16384 x 16384).

Table I shows the running time of sequential algorithms
for EC(CPU) algorithm and ED(CPU) algorithm. From the
table, we can see that EC(CPU) algorithm runs faster than
ED(CPU) algorithm because it performs fewest memory
access operations.

Table I also shows the running time of parallel algorithms
on the GPU. Since PWEC algorithm and PWED algorithm
performs a lot of kernel calls and stride memory access,
they have large memory access latency overhead. PWEC
algorithm runs faster than PWED algorithm for large input
images because error collection performs fewer access op-
erations than error diffusion. Also, we can see the overhead
of atomic operations is small in the error diffusion. Since
the global memory access is minimized, BWEC algorithm
runs faster than any other algorithm for any size of image.

V. CONCLUSION

The main contribution of this paper is to present several
algorithmic technique for error diffusion. Although error
diffusion involves sequential operations that scan an input
image in raster scan order, our new technique that partition
the image into parallelogram blocks can extract enough
parallelism. We have also implemented all algorithms, and

-13-

Table T
EXECUTION TIME OF ERROR DIFFUSION ALGORITHMS ON GPU AND CPU [MS]

Algorithms 1K 2K 3K 4K SK 6K 7K 8K 9K 10K 12K 14K 16K

PWED 20.89 | 42.22 | 63.69 | 8553 | 108.64 | 129.52 | 153.74 | 189.16 | 231.57 | 281.58 | 381.31 | 554.83 | 737.34
PWEC 20.10 | 40.36 | 62.01 | 90.27 | 119.84 | 14558 | 155.76 187.6 | 218.08 | 251.91 | 356.98 | 472.74 | 650.28
BWED 1.89 3.94 6.05 7.99 10.16 12.19 14.30 16.45 18.92 24.26 29.59 35.05 55.77
BWEC 1.85 3.92 6.01 8.10 9.85 12.01 14.25 16.63 18.77 21.07 26.33 31.32 46.75

ED(CPU) 1424 | 56.82 | 127.1 | 222.1 354.2 500.8 682.8 892.1 1129 1396 2020 2728 3555
EC(CPU) 829 | 3279 | 73.77 | 130.8 | 203.2 294.2 397.5 526.5 659.2 821.9 1175 1598 2092

the experimental result on GeForce GTX 780 Ti shows that
our BWEC algorithm runs faster than any other algorithm
for any size of matrix. It also runs 44 times faster than the
best sequential algorithm running on Intel Core-i7 3770K.

REFERENCES

[1] D.L.Lau and G. R. Arce, Modern Digital Halftoning, Second
Edition. CRC Press, 2008.

[2] Robert W. Floyd and L. Steinberg, “An Adaptive Algorithm
for Spatial Grayscale,” in Proc. of the Society for Information
Display 17, 1976 , pp. 75-77.

[3] B. E. Bayer, “An optimum method for two-level rendition
of continuous-tone pictures,” in Proc. of IEEE International
Conference on Communications, vol. 1, 1973 , pp. 11-15.

[4] NVIDIA Corporation, “NVIDIA CUDA C programming
guide version 5.0, 2012.

[5] K. Nakano and S.Matsumae, “The super warp architecture
with random address shift,” in Proc. of High Performance
Computing(HiPC), Dec. 2013, pp. 256-265.

[6] A. Kasagi, K. Nakano, and Y. Ito, “Parallel algorithms for the
summed area table on the asynchronous hierarchical memory
machine, with GPU implementations,” in Proc. of Interna-
tional Conference on Parallel Processing(ICPP), Sept. 2014,
pp. 251-250.

[7

—

Panagiotis T. Metaxas, “Optimal Parallel Error-Diffusion
Dithering” in Proc. of SPIE, 1999.

[8

—_—

Panagiotis T. Metaxas, “Parallel digital halftoning by error-
diffusion” in Proc. of PCK50, 2003.

[9] P. Li and J. P. Allebach, “Block interlaced pinwheel error
diffusion,” Journal of Electronic Imaging, vol. 14, no. 2, June
2005.

[10] Y.Zhang, J. Recker, R. Ulichney, G. Beretta, I. Tastl, . J. Lin,
and J. D. Owns, “A parallel error diffusion implementation
on a GPU,” in Proc. of SPIE, vol. 7872, Jan, 2011.

[11] K. Nakano, “Simple memory machine models for GPUs,”

in Proc. of International Parallel and Distributed Processing
Symposium Workshops, May 2012, pp. 788-797.

- 14-

